This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Cheung, Anthony Homework 6 Due: Oct 10 2006, 3:00 am Inst: David Benzvi 1 This printout should have 17 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. The due time is Central time. 001 (part 1 of 1) 10 points Evaluate the definite integral I = Z / 4 (7 x 2) sec 2 xdx. 1. I = 7 2 + 2 + 7 ln 2 2. I = 7 4  2 7 2 ln 2 correct 3. I = 7 4 + 2 7 2 ln 2 4. I = 7 2  2 7 ln 2 5. I = 7 2 + 2 + 7 2 ln 2 Explanation: Since d dx tan x = sec 2 x, integration by parts is suggested. For then, I = h (7 x 2) tan x i / 4 Z / 4 tan x d dx (7 x 2) dx. = 7 4  2 7 Z / 4 tan xdx. But Z / 4 tan xdx = h ln  sec x  i / 4 = ln 2 , so I = 7 4  2 7 2 ln 2 . keywords: integration by parts, trig function 002 (part 1 of 1) 10 points Determine the indefinite integral I = Z e x cos 2 xdx. 1. I = 1 5 e x 2 sin 2 x cos 2 x + C 2. I = 1 4 e x sin 2 x 2 cos 2 x + C 3. I = 1 5 e x 2 sin 2 x +cos 2 x + C correct 4. I = 1 4 e x 2 sin 2 x cos 2 x + C 5. I = 1 4 e x sin 2 x + 2 cos 2 x + C 6. I = 1 5 e x sin 2 x + 2 cos 2 x + C Explanation: After integration by parts, I = e x cos 2 x Z e x d dx cos 2 xdx = e x cos 2 x + 2 Z e x sin 2 xdx. To reduce this last integral to one having the same form as I , we integrate by parts again for then Z e x sin 2 xdx = e x sin 2 x Z e x d dx sin 2 xdx = e x sin 2 x 2 Z e x cos 2 xdx = e x sin 2 x 2 I . Thus I = e x cos 2 x + 2 n e x sin 2 x 2 I o . Cheung, Anthony Homework 6 Due: Oct 10 2006, 3:00 am Inst: David Benzvi 2 Solving for I we see that 1 + 4 I = e x cos 2 x + 2 e x sin 2 x. Consequently I = 1 5 e x 2 sin 2 x + cos 2 x + C with C an arbitrary constant. keywords: indefinite integral, integration by parts, exponential function, cosine function 003 (part 1 of 1) 10 points Determine the integral I = Z 6 ln x x 5 dx. 1. I = 3 2 x 4 ln x + 1 4 + C correct 2. I = 6 5 x 4 ln x + 1 4 + C 3. I = 3 2 x 4 ln x 1 4 + C 4. I = 6 5 x 4 ln x + 1 4 + C 5. I = 3 2 x 4 ln x + 1 4 + C 6. I = 6 5 x 4 ln x 1 4 + C Explanation: After integration by parts Z ln x x 5 dx = 1 4  ln x x 4 + Z 1 x 5 dx = 1 4 x 4 ln x + 1 4 + C . Consequently, I = 3 2 x 4 ln x + 1 4 + C with C an arbitrary constant....
View Full
Document
 Spring '08
 RAdin
 Calculus

Click to edit the document details