This preview shows page 1. Sign up to view the full content.
Unformatted text preview: (a) P [ X 1 = 1  X = 0 ,X 2 = 1] (b) P [ X = X 1 ] (c) P [ X 1 6 = X 2 ] 4. Consider a sequence of independent tosses of a coin with probability of heads, p . Let X n be the total number of tosses which yielded a heads given n tosses. (a) Verify that X n is a Markov Chain. Explicitly note the state space. (b) Determine the transition probability matrix. Is the Markov Chain homogeneous or nonhomogeneous. (c) Repeat (a) and (b) if X n is dened as the total number of tosses which yielded heads minus the total number of tosses which yielded tails given n tosses....
View
Full
Document
This note was uploaded on 02/02/2010 for the course EE 464 taught by Professor Caire during the Spring '06 term at USC.
 Spring '06
 Caire
 Gate

Click to edit the document details