{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

FundamentalConceptsforGears

# Ansiagma2003b97 y t kl

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: accuracy number) Qv is used here. Kv can be determined as fo llows: B = 0.25 12 - Q ) ; A = 50 + 56 1 - B ; ( ( ) v æ A + 200 ö V÷ SI units using K v = ç 2 -5 d ç ÷ , V is pitch line velo cit y at larger end = 5. 36(10 ) p n p (m/s) A è ø æ A + V ö ÷ Imperial units using K v = ç ç A ÷ , V is pitch line velocit y at larger end = pd p n p / 12 (ft/min) è ø Note: the maximum recommended pitch line velocity V is: [ A + (Q - 3 ] v ) 2 V ax = m/s for SI, and V ax = [ A + ( - 3)] ft/min for Imperial Qv 2 m m 200 KHb (Km), load distribut ion factor, accounting for uneven load distribut ion alo ng the mating tooth. Use Eq.15­11 (Budynas) to determine the value. Yx (Ks), size factor for bending, use Eq. 15­10 (Budynas) to determine the value. Yb (Kx), lengthwise curvature factor for bending strength, use 1 for straight bevel gear. YJ (J), geometry factor for bending, use Fig. 15­7 (Budynas) to determine the value. o Co nt act st ress: B B 2 3 s c = Z E s c = C p 1000 t W K A K v K H b Z x Z xc for SI units, and FW × d × Z I W t K o K v K m C s C xc for Imperial, where FW × d × I ZE (Cp), elastic efficient...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online