{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Ch17Word - Chapter 17 Page 1 CHAPTER 17 – Temperature...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 17 Page 1 CHAPTER 17 – Temperature, Thermal Expansion, and the Ideal Gas Law 1. The number of atoms in a mass m is given by N = m / Mm atomic . Because the masses of the two rings are the same, for the ratio we have N Au / N Ag = M Ag / M Au = 108/197 = 0.548 . 2. The number of atoms in a mass m is given by N = m / Mm atomic = (3.4 × 10 –3 kg)/(63.5 u)(1.66 × 10 –27 kg/u) = 3.2 × 10 22 atoms . 3. ( a ) T (°C) = (5/9)[ T (°F) – 32] = (5/9)(68°F – 32) = 20°C . ( b ) T (°F) = (9/5) T (°C) + 32 = (9/5)(1800°C) + 32 = 3272°F ˜ 3300°F . 4. ( a ) T (°F) = (9/5) T (°C) + 32 = (9/5)(– 15°C) + 32 = 5°F . ( b ) T (°C) = (5/9)[ T (°F) – 32] = (5/9)(– 15°F – 32) = – 26°C . 5. T (°F) = (9/5) T (°C) + 32 = (9/5)(40.0°C) + 32.0 = 104.0°F . 6. Because the temperature and length are linearly related, we have ? T /? L = (100.0°C – 0.0°C)/(22.85 cm – 11.82 cm) = 9.067 C°/cm. ( a ) ( T 1 – 0.0°C)/(16.70 cm – 11.82 cm) = 9.067 C°/cm, which gives T 1 = 44.2°C . ( b ) ( T 2 – 0.0°C)/(20.50 cm – 11.82 cm) = 9.067 C°/cm, which gives T 2 = 78.7°C . 7. We set T (°F) = T (°C) = T in the conversion between the temperature scales: T (°F) = (9/5) T (°C) + 32 T = (9/5) T + 32, which gives T = – 40°F = – 40°C . 8. At any temperature below 20°C the expansion cracks will increase. Thus the expansion from 20°C to 50°C must eliminate the cracks. Any higher temperature will cause stress in the concrete. If the cracks have a width ? L , we have ? L = α L ? T = [12 × 10 –6 (C°) –1 ](12 m)(50°C – 20°C) = 4.3 × 10 –3 m = 0.43 cm . 9. For the expansion ? L , we have ? L Invar = α Invar L ? T = [0.2 × 10 –6 (C°) –1 ](2.0 m)(5.0 C°) = 2.0 × 10 –6 m . For the other materials we have ? L steel = α steel L ? T = [12 × 10 –6 (C°) –1 ](2.0 m)(5.0 C°) = 1.2 × 10 –4 m . ? L marble = α marble L ? T = [2.5 × 10 –6 (C°) –1 ](2.0 m)(5.0 C°) = 2.5 × 10 –5 m . 10. We find the height change from ? L = α L ? T = [12 × 10 –6 (C°) –1 ](300 m)(25°C – 2°C) = 8.3 × 10 –2 m = 8.3 cm . 11. We can treat the change in diameter as a simple change in length, so we have ? L = α L ? T ; 1.869 cm – 1.871 cm = [12 × 10 –6 (C°) –1 ](1.871 cm)( T – 20°C), which gives T = – 69°C . 12. For the expanded dimensions, we have ¬ ′ = ¬ (1 + α ? T ); w ′ = w (1 + α ? T ). Thus the change in area is ? A = A ′ – A = ¬ ′ w ′ – ¬ w = ¬ w (1 + α ? T ) 2 – ¬ w = ¬ w [2 α ? T + ( α ? T ) 2 ] = ¬ w α ? T (2 + α ? T ). Because α ? T « 2, we have ? A = 2 α ¬ w ? T . Chapter 17 Page 2 13. The contraction of the glass causes the enclosed volume to decrease as if it were glass. The volume of water that can be added is ? V = ? V glass – ? V water = V β glass ? T – V β water ? T = V ( β glass – β water )? T = (350 mL)[27 × 10 –6 (C°) –1 – 210 × 10 –6 (C°) –1 ](20°C – 100°C) = 5.1 mL ....
View Full Document

{[ snackBarMessage ]}

### Page1 / 13

Ch17Word - Chapter 17 Page 1 CHAPTER 17 – Temperature...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online