TrigFormulae

# TrigFormulae - Various Trigonometric Equations You Will be...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Various Trigonometric Equations You Will be Expected to Know (1Z04 – Test #1) Basic Relations from the Definitions: csc(ϑ ) = 1 sin(ϑ ) tan(ϑ ) = sec(ϑ ) = sin(ϑ ) cos(ϑ ) 1 cos(ϑ ) cot(ϑ ) = cot(ϑ ) = 1 tan(ϑ ) cos(ϑ ) 1 = sin(ϑ ) tan(ϑ ) Pythagorean Relations: cos 2 (ϑ ) + sin 2 (ϑ ) = 1 1 + tan 2 (ϑ ) = sec2 (ϑ ) Double Angle Formulae: cos(2ϑ ) = cos 2 (ϑ ) − sin 2 (ϑ ) = 2 cos 2 (ϑ ) − 1 = 1 − 2sin 2 (ϑ ) sin(2ϑ ) = 2 cos(ϑ ) sin(ϑ ) Half-Angle Formulae (easily derivable from the double angle formula for cosine): cos 2 (ϑ / 2) = 1 (1 + cos(ϑ )) 2 sin 2 (ϑ / 2) = 1 (1 − cos(ϑ )) 2 Basic Derivative Formulae: d d cos(ϑ ) = − sin(ϑ ) sin(ϑ ) = cos(ϑ ) dx dx d d tan(ϑ ) = sec2 (ϑ ) sec(ϑ ) = sec(ϑ ) tan(ϑ ) dx dx Derivatives of Inverse Trigonometric Functions: d cos − 1 ( x ) = − dx 1 1− x 2 d sin − 1 ( x) = dx 1 1− x 2 d 1 tan − 1 ( x) = dx 1 + x2 Hyperbolic Functions: cosh( x ) = e x + e− x 2 sinh( x) = e x − e− x 2 tanh( x) = sinh( x ) cosh( x) sech( x) = 1 cosh( x) csch( x) = 1 sinh( x) coth( x) = 1 tanh( x) Hyperbolic Analogues to the Pythagorean Relations: cosh 2 ( x) − sinh 2 ( x) = 1 1 − tanh 2 ( x) = sech 2 ( x) Basic Hyperbolic Derivative Formulae: d cosh( x) = sinh( x) dx d sinh( x) = cosh( x) dx d tanh( x) = sech 2 ( x) dx ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

TrigFormulae - Various Trigonometric Equations You Will be...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online