This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: HW7 P(r ) kr , where k is a constant.
1. A sphere of radius R carries a polarization
(a) Calculate the bound charge b and b.
(b) Find the field inside and outside the sphere.
2. The space between the plate a parallelplate capacitor is filled with two slabs of linear
dielectric material. Each slab has thickness a, so the total distance between the plates is 2a.
Slab 1 has a dielectric constant r1, and slab 2 has a dielectric constant r2. The free charge
density on the top plate is and on the bottom plate is .
(a) Find the electric displacement in each slab.
(b) Find the electric field in each slab.
(c) Find the polarization in each slab.
(d) Find the potential difference between the plates.
(e) Find the location and amount of all bound charge.
(f) Now that you know all the charge (free and bound), recalculate the field in each
slab, and confirm your answer to (b). 3. At the interface between one linear dielectric and another the electric field lines bend. Show
that tan 2 2 tan1 2 Assuming there is no free charge at the boundary. 4. Two long coaxial cylindrical metal tubes (inner radius a, outer radius b) stand vertically in a
tank of dielectric oil (susceptibility e, mass density ). The inner one is maintained at
potential V, and the outer one is grounded. The voltage raises the oil level inside the tube to
a height h.
(a) Find the capacitance of the cylinder.
(b) What is the lifting force to the oil inside the tube by the capacitor?
(c) What is the height of the oil h?
(d) After the oil level is raised to the height of h, what’s the extra electric energy
pumped into the capacitor? Is this amount equal to the gravitational energy gain
of the oil? ...
View
Full
Document
This note was uploaded on 02/06/2010 for the course PHYSICS 11 taught by Professor Qiu during the Fall '09 term at Berkeley.
 Fall '09
 Qiu
 Magnetism

Click to edit the document details