{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chapter_5

# chapter_5 - CHAPTER 5 Integration EXERCISE SET 5.1 1...

This preview shows pages 1–4. Sign up to view the full content.

225 CHAPTER 5 Integration EXERCISE SET 5.1 1. Endpoints 0 , 1 n , 2 n , . . . , n - 1 n , 1; using right endpoints, A n = " r 1 n + r 2 n + · · · + r n - 1 n + 1 # 1 n n 2 5 10 50 100 A n 0 . 853553 0 . 749739 0 . 710509 0 . 676095 0 . 671463 2. Endpoints 0 , 1 n , 2 n , . . . , n - 1 n , 1; using right endpoints, A n = n n + 1 + n n + 2 + n n + 3 + · · · + n 2 n - 1 + 1 2 1 n n 2 5 10 50 100 A n 0 . 583333 0 . 645635 0 . 668771 0 . 688172 0 . 690653 3. Endpoints 0 , π n , 2 π n , . . . , ( n - 1) π n , π ; using right endpoints, A n = [sin( π/n ) + sin(2 π/n ) + · · · + sin( π ( n - 1) /n ) + sin π ] π n n 2 5 10 50 100 A n 1 . 57080 1 . 93376 1 . 98352 1 . 99935 1 . 99984 4. Endpoints 0 , π 2 n , 2 π 2 n , . . . , ( n - 1) π 2 n , π 2 ; using right endpoints, A n = [cos( π/ 2 n ) + cos(2 π/ 2 n ) + · · · + cos(( n - 1) π/ 2 n ) + cos( π/ 2)] π 2 n n 2 5 10 50 100 A n 0 . 555359 0 . 834683 0 . 919405 0 . 984204 0 . 992120 5. Endpoints 1 , n + 1 n , n + 2 n , . . . , 2 n - 1 n , 2; using right endpoints, A n = n n + 1 + n n + 2 + · · · + n 2 n - 1 + 1 2 1 n n 2 5 10 50 100 A n 0 . 583333 0 . 645635 0 . 668771 0 . 688172 0 . 690653 6. Endpoints - π 2 , - π 2 + π n , - π 2 + 2 π n , . . . , - π 2 + ( n - 1) π n , π 2 ; using right endpoints, A n = cos - π 2 + π n + cos - π 2 + 2 π n + · · · + cos - π 2 + ( n - 1) π n + cos π 2 π n n 2 5 10 50 100 A n 1 . 57080 1 . 93376 1 . 98352 1 . 99936 1 . 99985

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
226 Chapter 5 7. Endpoints 0 , 1 n , 2 n , . . . , n - 1 n , 1; using right endpoints, A n = s 1 - 1 n 2 + s 1 - 2 n 2 + · · · + s 1 - n - 1 n 2 + 0 1 n n 2 5 10 50 100 A n 0 . 433013 0 . 659262 0 . 726130 0 . 774567 0 . 780106 8. Endpoints - 1 , - 1 + 2 n , - 1 + 4 n , . . . , - 1 + 2( n - 1) n , 1; using right endpoints, A n = s 1 - n - 2 n 2 + s 1 - n - 4 n 2 + · · · + s 1 - n - 2 n 2 + 0 2 n n 2 5 10 50 100 A n 1 1 . 423837 1 . 518524 1 . 566097 1 . 569136 9. Endpoints - 1 , - 1 + 2 n , - 1 + 4 n , . . . , 1 - 2 n , 1; using right endpoints, A n = h e - 1+ 2 n + e - 1+ 4 n + e - 1+ 6 n + . . . + e 1 - 2 n + e 1 i 2 n n 2 5 10 50 100 A n 3 . 718281 2 . 851738 2 . 59327 2 . 39772 2 . 37398 10. Endpoints 1 , 1 + 1 n , 1 + 2 n , . . . , 2 - 1 n , 2; using right endpoints, A n = ln 1 + 1 n + ln 1 + 2 n + . . . + ln 2 - 1 n + ln 2 1 n n 2 5 10 50 100 A n 0 . 549 0 . 454 0 . 421 0 . 393 0 . 390 11. Endpoints 0 , 1 n , 2 n , . . . , n - 1 n , 1; using right endpoints, A n = sin - 1 1 n + sin - 1 2 n + . . . + sin - 1 n - 1 n + sin - 1 (1) 1 n n 2 5 10 50 100 A n 1 . 04729 0 . 75089 0 . 65781 0 . 58730 0 . 57894 12. Endpoints 0 , 1 n , 2 n , . . . , n - 1 n , 1; using right endpoints, A n = tan - 1 1 n + tan - 1 2 n + . . . + tan - 1 n - 1 n + tan - 1 (1) 1 n n 2 5 10 50 100 A n 0 . 62452 0 . 51569 0 . 47768 0 . 44666 0 . 44274 13. 3( x - 1) 14. 5( x - 2) 15. x ( x + 2) 16. 3 2 ( x - 1) 2 17. ( x + 3)( x - 1) 18. 3 2 x ( x - 2)
Exercise Set 5.2 227 19. false; the area is 4 π 20. false; consider the left endpoint approximation on [1 , 2]. 21. true 22. true; a differentiable function is continuous 23. A (6) represents the area between x = 0 and x = 6; A (3) represents the area between x = 0 and x = 3; their difference A (6) - A (3) represents the area between x = 3 and x = 6, and A (6) - A (3) = 1 3 (6 3 - 3 3 ) = 63. 24. A (9) = 9 3 / 3 , A ( - 3) = ( - 3) 3 / 3, and the area between x = - 3 and x = 9 is given by A (9) - A ( - 3) = (9 3 - ( - 3) 3 ) / 3 = 252. 25. B is also the area between the graph of f ( x ) = x and the interval [0 , 1] on the y - axis, so A + B is the area of the square. 26. If the plane is rotated about the line y = x then A becomes B and vice versa. 27. The area which is under the curve lies to the right of x = 2 (or to the left of x = - 2). Hence f ( x ) = A 0 ( x ) = 2 x ; 0 = A ( a ) = a 2 - 4, so take a = 2 (or a = - 2 to measure the area to the left of x = - 2). 28. f ( x ) = A 0 ( x ) = 2 x - 1 , 0 = A ( a ) = a 2 - a , so take a = 0 (or a = 1). 30. Intuitively it is the area represented by a set of tall thin rectangles, stretching from x = a to x = b , each having height C ; in other words C ( b - a ). Analytically it is given by Z b a [( f ( x ) + C ) - f ( x )] dx = C ( b - a ).

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern