chapter_5

chapter_5 - CHAPTER 5 Integration EXERCISE SET 5.1 1....

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
225 CHAPTER 5 Integration EXERCISE SET 5.1 1. Endpoints 0 , 1 n , 2 n ,..., n - 1 n , 1; using right endpoints, A n = " r 1 n + r 2 n + ··· + r n - 1 n + 1 # 1 n n 2 5 10 50 100 A n 0 . 853553 0 . 749739 0 . 710509 0 . 676095 0 . 671463 2. Endpoints 0 , 1 n , 2 n n - 1 n , 1; using right endpoints, A n = ± n n + 1 + n n + 2 + n n + 3 + + n 2 n - 1 + 1 2 ² 1 n n 2 5 10 50 100 A n 0 . 583333 0 . 645635 0 . 668771 0 . 688172 0 . 690653 3. Endpoints 0 , π n , 2 π n ( n - 1) π n ; using right endpoints, A n = [sin( π/n ) + sin(2 π/n ) + + sin( π ( n - 1) /n ) + sin π ] π n n 2 5 10 50 100 A n 1 . 57080 1 . 93376 1 . 98352 1 . 99935 1 . 99984 4. Endpoints 0 , π 2 n , 2 π 2 n ( n - 1) π 2 n , π 2 ; using right endpoints, A n = [cos( π/ 2 n ) + cos(2 π/ 2 n ) + + cos(( n - 1) π/ 2 n ) + cos( π/ 2)] π 2 n n 2 5 10 50 100 A n 0 . 555359 0 . 834683 0 . 919405 0 . 984204 0 . 992120 5. Endpoints 1 , n + 1 n , n + 2 n 2 n - 1 n , 2; using right endpoints, A n = ± n n + 1 + n n + 2 + + n 2 n - 1 + 1 2 ² 1 n n 2 5 10 50 100 A n 0 . 583333 0 . 645635 0 . 668771 0 . 688172 0 . 690653 6. Endpoints - π 2 , - π 2 + π n , - π 2 + 2 π n - π 2 + ( n - 1) π n , π 2 ; using right endpoints, A n = ± cos ³ - π 2 + π n ´ + cos µ - π 2 + 2 π n + + cos µ - π 2 + ( n - 1) π n + cos ³ π 2 ´ ² π n n 2 5 10 50 100 A n 1 . 57080 1 . 93376 1 . 98352 1 . 99936 1 . 99985
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
226 Chapter 5 7. Endpoints 0 , 1 n , 2 n ,..., n - 1 n , 1; using right endpoints, A n = s 1 - ± 1 n ² 2 + s 1 - ± 2 n ² 2 + ··· + s 1 - ± n - 1 n ² 2 + 0 1 n n 2 5 10 50 100 A n 0 . 433013 0 . 659262 0 . 726130 0 . 774567 0 . 780106 8. Endpoints - 1 , - 1 + 2 n , - 1 + 4 n - 1 + 2( n - 1) n , 1; using right endpoints, A n = s 1 - ± n - 2 n ² 2 + s 1 - ± n - 4 n ² 2 + + s 1 - ± n - 2 n ² 2 + 0 2 n n 2 5 10 50 100 A n 1 1 . 423837 1 . 518524 1 . 566097 1 . 569136 9. Endpoints - 1 , - 1 + 2 n , - 1 + 4 n 1 - 2 n , 1; using right endpoints, A n = h e - 1+ 2 n + e - 1+ 4 n + e - 1+ 6 n + ... + e 1 - 2 n + e 1 i 2 n n 2 5 10 50 100 A n 3 . 718281 2 . 851738 2 . 59327 2 . 39772 2 . 37398 10. Endpoints 1 , 1 + 1 n , 1 + 2 n 2 - 1 n , 2; using right endpoints, A n = ³ ln ± 1 + 1 n ² + ln ± 1 + 2 n ² + + ln ± 2 - 1 n ² + ln2 ´ 1 n n 2 5 10 50 100 A n 0 . 549 0 . 454 0 . 421 0 . 393 0 . 390 11. Endpoints 0 , 1 n , 2 n n - 1 n , 1; using right endpoints, A n = ³ sin - 1 ± 1 n ² + sin - 1 ± 2 n ² + + sin - 1 ± n - 1 n ² + sin - 1 (1) ´ 1 n n 2 5 10 50 100 A n 1 . 04729 0 . 75089 0 . 65781 0 . 58730 0 . 57894 12. Endpoints 0 , 1 n , 2 n n - 1 n , 1; using right endpoints, A n = ³ tan - 1 ± 1 n ² + tan - 1 ± 2 n ² + + tan - 1 ± n - 1 n ² + tan - 1 (1) ´ 1 n n 2 5 10 50 100 A n 0 . 62452 0 . 51569 0 . 47768 0 . 44666 0 . 44274 13. 3( x - 1) 14. 5( x - 2) 15. x ( x + 2) 16. 3 2 ( x - 1) 2 17. ( x + 3)( x - 1) 18. 3 2 x ( x - 2)
Background image of page 2
Exercise Set 5.2 227 19. false; the area is 4 π 20. false; consider the left endpoint approximation on [1 , 2]. 21. true 22. true; a differentiable function is continuous 23. A (6) represents the area between x = 0 and x = 6; A (3) represents the area between x = 0 and x = 3; their difference A (6) - A (3) represents the area between x = 3 and x = 6, and A (6) - A (3) = 1 3 (6 3 - 3 3 ) = 63. 24. A (9) = 9 3 / 3 ,A ( - 3) = ( - 3) 3 / 3, and the area between x = - 3 and x = 9 is given by A (9) - A ( - 3) = (9 3 - ( - 3) 3 ) / 3 = 252. 25. B is also the area between the graph of f ( x ) = x and the interval [0 , 1] on the y - axis, so A + B is the area of the square. 26. If the plane is rotated about the line y = x then A becomes B and vice versa. 27. The area which is under the curve lies to the right of x = 2 (or to the left of x = - 2). Hence f ( x ) = A 0 ( x ) = 2 x ;0 = A ( a ) = a 2 - 4, so take a = 2 (or a = - 2 to measure the area to the left of x = - 2). 28. f ( x ) = A 0 ( x ) = 2 x - 1 , 0 = A ( a ) = a 2 - a , so take a = 0 (or a = 1).
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/07/2010 for the course MAC 2312 taught by Professor Storfer during the Spring '08 term at FIU.

Page1 / 62

chapter_5 - CHAPTER 5 Integration EXERCISE SET 5.1 1....

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online