chapter_5

# chapter_5 - CHAPTER 5 Integration EXERCISE SET 5.1 1....

This preview shows pages 1–4. Sign up to view the full content.

225 CHAPTER 5 Integration EXERCISE SET 5.1 1. Endpoints 0 , 1 n , 2 n ,..., n - 1 n , 1; using right endpoints, A n = " r 1 n + r 2 n + ··· + r n - 1 n + 1 # 1 n n 2 5 10 50 100 A n 0 . 853553 0 . 749739 0 . 710509 0 . 676095 0 . 671463 2. Endpoints 0 , 1 n , 2 n n - 1 n , 1; using right endpoints, A n = ± n n + 1 + n n + 2 + n n + 3 + + n 2 n - 1 + 1 2 ² 1 n n 2 5 10 50 100 A n 0 . 583333 0 . 645635 0 . 668771 0 . 688172 0 . 690653 3. Endpoints 0 , π n , 2 π n ( n - 1) π n ; using right endpoints, A n = [sin( π/n ) + sin(2 π/n ) + + sin( π ( n - 1) /n ) + sin π ] π n n 2 5 10 50 100 A n 1 . 57080 1 . 93376 1 . 98352 1 . 99935 1 . 99984 4. Endpoints 0 , π 2 n , 2 π 2 n ( n - 1) π 2 n , π 2 ; using right endpoints, A n = [cos( π/ 2 n ) + cos(2 π/ 2 n ) + + cos(( n - 1) π/ 2 n ) + cos( π/ 2)] π 2 n n 2 5 10 50 100 A n 0 . 555359 0 . 834683 0 . 919405 0 . 984204 0 . 992120 5. Endpoints 1 , n + 1 n , n + 2 n 2 n - 1 n , 2; using right endpoints, A n = ± n n + 1 + n n + 2 + + n 2 n - 1 + 1 2 ² 1 n n 2 5 10 50 100 A n 0 . 583333 0 . 645635 0 . 668771 0 . 688172 0 . 690653 6. Endpoints - π 2 , - π 2 + π n , - π 2 + 2 π n - π 2 + ( n - 1) π n , π 2 ; using right endpoints, A n = ± cos ³ - π 2 + π n ´ + cos µ - π 2 + 2 π n + + cos µ - π 2 + ( n - 1) π n + cos ³ π 2 ´ ² π n n 2 5 10 50 100 A n 1 . 57080 1 . 93376 1 . 98352 1 . 99936 1 . 99985

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
226 Chapter 5 7. Endpoints 0 , 1 n , 2 n ,..., n - 1 n , 1; using right endpoints, A n = s 1 - ± 1 n ² 2 + s 1 - ± 2 n ² 2 + ··· + s 1 - ± n - 1 n ² 2 + 0 1 n n 2 5 10 50 100 A n 0 . 433013 0 . 659262 0 . 726130 0 . 774567 0 . 780106 8. Endpoints - 1 , - 1 + 2 n , - 1 + 4 n - 1 + 2( n - 1) n , 1; using right endpoints, A n = s 1 - ± n - 2 n ² 2 + s 1 - ± n - 4 n ² 2 + + s 1 - ± n - 2 n ² 2 + 0 2 n n 2 5 10 50 100 A n 1 1 . 423837 1 . 518524 1 . 566097 1 . 569136 9. Endpoints - 1 , - 1 + 2 n , - 1 + 4 n 1 - 2 n , 1; using right endpoints, A n = h e - 1+ 2 n + e - 1+ 4 n + e - 1+ 6 n + ... + e 1 - 2 n + e 1 i 2 n n 2 5 10 50 100 A n 3 . 718281 2 . 851738 2 . 59327 2 . 39772 2 . 37398 10. Endpoints 1 , 1 + 1 n , 1 + 2 n 2 - 1 n , 2; using right endpoints, A n = ³ ln ± 1 + 1 n ² + ln ± 1 + 2 n ² + + ln ± 2 - 1 n ² + ln2 ´ 1 n n 2 5 10 50 100 A n 0 . 549 0 . 454 0 . 421 0 . 393 0 . 390 11. Endpoints 0 , 1 n , 2 n n - 1 n , 1; using right endpoints, A n = ³ sin - 1 ± 1 n ² + sin - 1 ± 2 n ² + + sin - 1 ± n - 1 n ² + sin - 1 (1) ´ 1 n n 2 5 10 50 100 A n 1 . 04729 0 . 75089 0 . 65781 0 . 58730 0 . 57894 12. Endpoints 0 , 1 n , 2 n n - 1 n , 1; using right endpoints, A n = ³ tan - 1 ± 1 n ² + tan - 1 ± 2 n ² + + tan - 1 ± n - 1 n ² + tan - 1 (1) ´ 1 n n 2 5 10 50 100 A n 0 . 62452 0 . 51569 0 . 47768 0 . 44666 0 . 44274 13. 3( x - 1) 14. 5( x - 2) 15. x ( x + 2) 16. 3 2 ( x - 1) 2 17. ( x + 3)( x - 1) 18. 3 2 x ( x - 2)
Exercise Set 5.2 227 19. false; the area is 4 π 20. false; consider the left endpoint approximation on [1 , 2]. 21. true 22. true; a diﬀerentiable function is continuous 23. A (6) represents the area between x = 0 and x = 6; A (3) represents the area between x = 0 and x = 3; their diﬀerence A (6) - A (3) represents the area between x = 3 and x = 6, and A (6) - A (3) = 1 3 (6 3 - 3 3 ) = 63. 24. A (9) = 9 3 / 3 ,A ( - 3) = ( - 3) 3 / 3, and the area between x = - 3 and x = 9 is given by A (9) - A ( - 3) = (9 3 - ( - 3) 3 ) / 3 = 252. 25. B is also the area between the graph of f ( x ) = x and the interval [0 , 1] on the y - axis, so A + B is the area of the square. 26. If the plane is rotated about the line y = x then A becomes B and vice versa. 27. The area which is under the curve lies to the right of x = 2 (or to the left of x = - 2). Hence f ( x ) = A 0 ( x ) = 2 x ;0 = A ( a ) = a 2 - 4, so take a = 2 (or a = - 2 to measure the area to the left of x = - 2). 28. f ( x ) = A 0 ( x ) = 2 x - 1 , 0 = A ( a ) = a 2 - a , so take a = 0 (or a = 1).

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 02/07/2010 for the course MAC 2312 taught by Professor Storfer during the Spring '08 term at FIU.

### Page1 / 62

chapter_5 - CHAPTER 5 Integration EXERCISE SET 5.1 1....

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online