Unformatted text preview: AMS 311 (Fall, 2009) Joe Mitchell PROBABILITY THEORY Homework Set # 2 Due at the beginning of class on Thursday, September 17, 2009. Reminder: Show your reasoning! Read: Ross, Chapter 3, sections 3.13.4. Examples to read carefully: Chapter 3: 2a–2g, 3a–3g, 3i–3n, 4a–4f (1). (12 points) Suppose that two fair dice have been tossed and the total of their top faces is found to be divisible by 4. What is the probability that both of them have landed 6? (2). (12 points) Suppose for simplicity that the number of children in a family is 1, 2, or 3, with probability 1/3 each. Little Bobby has no sisters. What is the probability that he is an only child? (Set the problem up carefully. Remember to define the sample space, and any events that you use!) (3). (12 points) English and American spellings are colour and color , respectively. A man staying at a Parisian hotel writes this word, and a letter taken at random from his spelling is found to be a vowel. If 40 percent of the Englishspeaking men at the hotel are English and 60 percent are Americans, what is the...
View
Full
Document
 Fall '08
 Tucker,A
 Probability, Probability theory

Click to edit the document details