# hw5.09 - ECE521 Linear Systems Fall 2009 Homework 5 Due...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE521 Linear Systems Fall 2009 Homework 5: Due November 5 Problem 1: Consider the system ˙ x = parenleftbigg- 3 5- 3 parenrightbigg x + parenleftbigg 1 parenrightbigg · 1 bracehtipupleftbracehtipdownrightbracehtipdownleftbracehtipupright u x (0) = parenleftbigg 1 parenrightbigg y = [1 2] · x 1. Find the transfer function G ( s ). 2. We know that y ( t ) = Ce tA x (0) + integraldisplay t Ce A ( t- τ ) Bu ( τ ) dτ bracehtipupleft bracehtipdownrightbracehtipdownleft bracehtipupright y (0) ( t ) Using Laplace transform, find the output y (0) ( t ) when the initial state is zero. (Use Laplace transform tables). 3. Having computed y (0) ( t ) find y ( t ). Problem 2: Consider a single input single output (SISO) system ( ˆ A, ˆ B ) which is in canonical form, that is ˆ A =      1 . . . 1- q- q 1 · · · - q n- 1      , ˆ B =      . . . 1      , ˆ C T =      c c 1 ....
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

hw5.09 - ECE521 Linear Systems Fall 2009 Homework 5 Due...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online