ee313_exam2_fall2002

# ee313_exam2_fall2002 - BB 313 Midterm Exam 2 Name This exam...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: BB 313 Midterm Exam 2 November 16, 2001 Name This exam consists of 4 equal—weight questions. Show all of your work in order to receive full credit. Attached to this test are the following tables from the text: 1) Laplace Transform Pairs 2) Laplace Transform Operations 3) Z—Transform Pairs 4) Z—Transform Operations Formula: \x / 1 . , r (g " f {'1 p * ﬂ ; v x’ 3 \ ‘ ' ‘~' inf/V yin r / I JY/ 7 j 7 ‘1 0 ' ’7 G u " f- a; Question 1. Consider the signals f (t) and g(t) shown in the ﬁgures below. :7“ gm f(t) ' l g (a) By direct integrationeﬁndlherLaplace transform and region of convergence of f (t) . f (b)rFind the Laplace transform and region of convergence of g(t). :3 (c) Find the Laplace transform of g( 0.St)and sketch a plot of g( O.5t)vs. t. .. r «:::>:v.::> r a . - . «A: T. (0; H11}: '2: -_> 5:; /‘ gt '— ~ ‘3. at —_ 3 a,“ ; .. I _ E f _. .311 “1 m w \ e A) J! :i t» ,3, 39 3- ” e. 7131 ‘ui a 7 O 2‘” A <41; ”‘ f / J "’ Wit) ., Co ‘ 3 ,0 " u ’5va ‘ 1 A1 I! , i ‘1! , - if”; 7.: {a Few; a PM :-— *3 w\’: L‘ ._7 z ‘1. .. g ; l I: ?" - e? ‘ W F( 1L > i .2 a l w i '1 —- «1 “ n .1", ’ k __ ‘ "v V‘ -~ ~~~~~~~ ~ "" “I?” ",1 . _ . t “l (C) 1... r L .3" 4, ,‘z; . : 2 OIKQS/! v I _ g . .-. _-. a _ g u ﬁx F K r x . ‘ 3 " ‘; - a: C 7 .4. ‘ é; '\' {n 2 M”. W“ M :: l ‘ 3 i 4.3} L» .— 4:. g ’ T if -’ 5 n u 3. 33—) @ c l 3 ~ 11‘ - n.1,“ I V ‘. “’p ‘ ﬂ 0") "" l. x, J A. 7. z if! ;‘ ‘Is ‘ e > [ll , J €— 1“ .f E j _ o ‘ 2 '9 Z '— , A f B J ,z"“\.\ ‘ K K ‘ . \ ,r . . . . . . . . . {Questlo/m‘Z. Thie transfer function of a continuous-time linear tlme-lnvanant system 15 \given 'y / \\,\\/L\M////f _ [1(5) = ___§¥2)_ _ (s+1)(s +2s+2) {O (a) Show a block diagram of the system in cascade form. ‘ (b) Realize the system in cascade form using integrators, multipliers, and adders. F\{S‘\’ orclPV 3 xi“; EM. 8 k. W 126,: A ﬁg {1 1:? K i ’1’ \E («A : r? W. _ .\‘V‘;V."L > .\‘ Question 3. Consider a discrete—time system described by the difference equation 4y(k)+ 43(k — 1) +y(k— 2) =f(k- 1), k 20. x w: 20 (a) Find the response y( k) of the system with input f (k) = 3k u(k) and initial conditions y(—1)= 0 and y(—2)= 1. 5 (b) What is the transfer function of the system? (a) wmw HL'\\((Z')+‘Z'1Y(2)41 _. i'Fc-L) \ .\ \ - k 7' ﬁ‘ — 3. {H + ‘-\7_"+z‘1 )Wz; = 1 Lit—g3 _ A, - 2‘3 awful—WW) __ 33.17:. z‘lk‘d12+\'\1*iv\al> ' 1—3 = 7. zeta/’11 " (1—3 My“; /‘:\ 51,3 )sz’rl" % 1 w \__ m \ k3 W0) 3‘. T vii—L” ~r ZJf l, J : dbl“); \Z‘r“ a.“ 1’3": t'Zszi : O 104—17 ‘ _ l \ ’fﬂfﬂ \ ,.—”3' )L\ 1 \ O i1. ‘L/i ‘ﬂ-’ ’ 7. 2,) L 1 3 1 - n. \ ‘\S-2..,.5 — ~ L24; S \ W‘M\ \ .1 z, / as _ \ —~ " (1:531, 1”; , V " r 4 \h’H‘iCLﬂn \ Arr/0‘ ‘ EO‘ZWS +0.(0L\AQ~(11 I .J My ’1 q \ h c —\ h _"\ ¢\ \RV/O 2 "mow (37% o.\bh\z) — 0.3‘\2) J ) x” i L} x» Question‘4. The transfer function HQﬂEfgdﬁcreteZtime LTI system is given by My , ” ' 3 ~ a.» r (a) Is the system stable? Why or why not. (b) Find the frequency response of the system. (c) Find the system response y( k) to the input f (k) = cost—1: k) for k 2 0. (d) Is the frequency response periodic? Why or why not. NP . . L63 Yes bar 003C it: PM: 1- 0.6 M'ea mswe ﬂu; omit curate» o§ m (manta-M Pkmm,‘ _ .jL ‘JL ‘ ' , ' ' J), m We: 3: e} + 0.9 ._ W mg 4 _ o. 5 + ~ sue—0.. ﬁr” .- o. 5 8 (C) \\-\K€5JL) = <Qo§jL+o§3>L +<SWQL>1 LCDSJL’O'S71 + (Sm .17.):- gz/‘A lid/K 'L/ t '- Los‘JL + \xbwsﬁ.+ O.(o'~\ + min. W \‘CoSIJL— cosh. + 02.5 + Smle Lb C0341 3? -co~5.52.~: L25 ’ 4 MW” — 5 JL \ \ «x 40m“‘ j)“ MW \ cosh—0.5 / t V __ T For "x ‘0- “ ‘3’ *3 ‘1 \ \ 3W1 ‘ ’ ,-\’ ’"’ - mud - /: O'Bqa)’ L Hue > - mm- \ OR ) \ 0‘3 -‘_— -\.138 Md- : #95:” Mo = \HE- r2”: CWT/2““ '38) .(L/ “as we :. JJ€ﬂ , 1'05: “but 0 3 CW {r L“??? ARUWQV‘HA HSPD'NNL”: oiwoqﬁ X10 \iC' ...
View Full Document

## This note was uploaded on 02/09/2010 for the course EE 313 taught by Professor Cardwell during the Fall '07 term at University of Texas.

### Page1 / 6

ee313_exam2_fall2002 - BB 313 Midterm Exam 2 Name This exam...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online