This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: du )( M 4030 Exam 2 Reid Fall 98 ®
.051: 22:. on»
}. 1. (a) Let y x: W, m: z (31: +4)”. Find g; when m 2 —1. f‘“~(éu)(2‘u)(»m{suas) zzmuugum: W33“,
9 Ed"; ‘ (2'0): ii'u)‘ 9L3: (ELIA‘36d1'53 ~ {:2 (2.?) 43* 29 liq
0“ 2%)): {3 w)‘ 1 3' ’ 'C’ "8"
Ti (b) Compute the derivative of: ﬂat) : <5:an)? (You do not; have to simplify your answer) I L Fwy (JV 1%" 5:2 MW
m ZMWME 9 W 1 I‘f“ K3J3 2. Consider the curve
33 — 2xy+ 63,? = 24 E/ (a) Show the point (2,?) lies on the curve.
x"? . ‘1 " Z
1..
Ca"— mmrw cw ' 2"
a? * z w 2% "w 2"
’6
Zq‘: Z q f :1 (LAst 091 f
(b) Find the Equations of the tangent line and normal line to the curve at (2, 2).
m; I.
Y » Zxou, g: (254‘, j
g "at; a5, 0 d3"
arm m 26
J, 5332 7 313» C3}
d1" 23*13}
0% _ 3&3“
Dix 24%  12(1)
(2: ,. 3 Q _ £73 7 (TIME? 1 ’ 1&thﬁ‘p7 ﬁrmi‘sw/f
0’
:1; i 
_l 7 ’3 * Nam; {Jam “If! 3. A rocket rising vertically is tracked by a radar station 6 miles from the launchpad. How
fast is the rocket rising when it is 3 miles high and the distance from the radar station
is increasing at a rate of 1580 miles per hour. ol
{Smog ﬁg.“ lgoo M; Q“: 1
1 ‘2 ~ tack .. zeta
.Q 1 A at .5 Z a?) ,, (m)
Jag: 0"» 435‘ :33. a vital
2 m oh: ' 2k ow :W<SJ“‘?“ 4. A particle moves along the x—axis with position at time t 3 0 given by 33(3) = t3 wﬁtz — 151::
At which times is the particle at rest. On which intervals is. the particle moving to the
right? {hﬁ wt, ﬁfe”? hH‘vt‘w 11({1‘} '1) O XiKH; 31" ~ {21‘ [33’ : gag“ — 5):. gaéﬂﬁ) :0 AT $530 W "LH‘O 3/5 Questions 5 and 8 below refer to the function :$3+15 bNE 1k? 0/ 7» I" fix} 5.(a) Find the i1‘1tervals on which f is increasing and thme on which it is decreasing.
E ‘ " '2, ) 3  3 .. (L. 3,
1 ,_, 4 ' ‘K '2, 1 (1
WA ‘* Bx (ﬂag {4‘}, ngTH? x ‘
W x "
2.
K 3, m =2:
ng‘fé Q ~ tx‘q’t. :3 Z5): {Cu 3:» x »8 33> X Z (b) Dermine the critical points of f, and the nature of any Iccal extrema. pm m— om: k? 0 5m x _ ‘ x:’Z 4242) [aHim magi/l US 6(a) Find the intervals on which f is concave up/down and any inﬂection points. 3113‘ 23:374.! 5% ” My“) X ‘ x
: QYw_[/{xw+ 32X 213432 4.; 1K.)
X“ ‘ k3 ‘ X3 0 to m x’wwco, K3245: $7.7: : ‘35'
3M * 1
3:: \/
Cog/cilng U10 3' (fog, 3Wlé0, *c’c‘)
fﬁNCAUI; 913W” ' O) IbFLECnov FG'MZ’; ‘g: 3W ’ (b) Describe any horizontal or vertical asymptotes, x and yintercepts and then sketch the
graph clearly marking the information on the graph. ' ,Uo Hsﬁm zmmm M w n are VfﬂthﬁL ﬁngﬂfarf frfr kdrO‘
(Mg m; motr W0 ‘1~IA'1"(/‘cvfﬂ4 Xﬂwﬁfﬁcgﬂ'r 1 if 49.x, 5/5 ...
View
Full Document
 Fall '07
 Sadler
 Multivariable Calculus, Mile, Convex function, radar station, Uo Hsﬁm zmmm, Reid Fall

Click to edit the document details