The basis vectors represent xaxis fundamental

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: and direction where ĵ = <0,1> are called basis vectors, Ax and Ay basis are the x and y–components (scalars), and θ is components the direction of the vector as measured from the positive x–axis. The basis vectors represent x–axis. fundamental directions in the plane, and any vector can be written in the above form. 2–Dimensional Vectors, cont. A vector is represented as a directed ray from vector the origin to the point (Ax, Ay). 2–Dimensional Vectors, cont. . The magnitude of the vector is given by The 2 2 A = A = Ax + Ay The vector hasAy direction θ ygiven by The a direction A −1 = tan θ = a tan A A x x . 3–Dimensional Vectors Recall that we can write a location in the three Recall dimensional space as the point (Ax, Ay , Az). A 3–dimensional vector A = <Ax, Ay , Az> = Ax i+ dimensional vector <A Ay j + Az k is a physical quantity that has both magnitude and direction, where the vectors i = direction where <1,0,0>, j = <0,1,0> and k = <0,0,1&gt...
View Full Document

This note was uploaded on 02/10/2010 for the course PHY 2053 taught by Professor Hardy during the Spring '10 term at University of Southern Maine.

Ask a homework question - tutors are online