This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 184 3 Exotic Options ¯ C + + ¯ C = 1 , ¯ C + α + + ¯ C α = 0 , ¯ C + ¯ ξ α + f 2 + ¯ C ¯ ξ α f 2 = ξ f 2 , ¯ C + α + ¯ ξ α + f 2 + ¯ C α ¯ ξ α f 2 = ξ f 2 . From the first two conditions, we have ¯ C + = α α α + , and ¯ C = α + α + α and W ∞ = ¯ C + µ ξ ξ f 1 ¶ α + + ¯ C µ ξ ξ f 1 ¶ α = α α α + µ ξ ξ f 1 ¶ α + + α + α + α µ ξ ξ f 1 ¶ α . Subtracting the third condition from the fourth condition yields ¯ C + ( α + 1) ¯ ξ α + f 2 + ¯ C ( α 1) ¯ ξ α f 2 = 0 . Hence we have ¯ ξ f 2 = µ ¯ C ( α 1) ¯ C + ( α + 1) ¶ 1 α + α = µ α + ( α 1) α ( α + 1) ¶ 1 α + α . From the third condition, we further have ξ f 2 = ¯ ξ α f 2 ‡ ¯ C + ¯ ξ α + α f 2 + ¯ C · = ¯ ξ α f 2 µ α α + α · α + ( α 1) α ( α + 1) + α + α + α ¶ = µ α + ( α 1) α ( α + 1) ¶ α α + α α + α + α µ 1 α α + 1 + 1 ¶ = α + α + 1 µ α + ( α 1) α ( α + 1) ¶ α α + α . Finally we reach at ξ f 1 = ξ f 2 / ¯ ξ f 2 = α + α + 1 µ α + ( α 1) α ( α + 1) ¶ α 1 α + α . 21. Consider the following problem 3 Exotic Options 185 ∂V ∂t + 1 2 n ∑ i =1 n ∑ j =1 ρ ij σ i σ j S i S j ∂ 2 V ∂S i ∂S j + n ∑ i =1 ( r D i ) S i ∂V ∂S i rV = 0 , ≤ S , ≤ t ≤ T, V ( S , T ) = V T ( S 1 , S 2 , ··· , S n ) , ≤ S . a) Let V ( S , t ) = e r ( T t ) V ( S , t ). Show that V ( S , t ) is the solution of the problem ∂ V ∂t + 1 2 n ∑ i =1 n ∑ j =1 ρ ij σ i σ j S i S j ∂ 2 V ∂S i ∂S j + n ∑ i =1 ( r D i ) S i ∂ V ∂S i = 0 , ≤ S , ≤ t ≤ T, V ( S , T ) = V T ( S 1 , S 2 , ··· , S n ) , ≤ S . b) Let ( y i = a i [ln S i + b i ( T t )] , i = 1 , 2 , ··· , n, τ = T t, and V 1 ( y , τ ) = V ( S , t ), y standing for ( y 1 , y 2 , ··· , y n ) T . Find a i and b i such that V 1 ( y , τ ) satisfies ∂ V 1 ( y , τ ) ∂τ = n ∑ i =1 n ∑ j =1 ρ ij ∂ 2 V 1 ( y , τ ) ∂y i ∂y j ,∞ < y < ∞ , ≤ τ ≤ T, V ( y , 0) = V 1 T ( y ) ,∞ < y < ∞ , where V 1 T ( y ) ≡ V T ‡ e σ 1 y 1 / √ 2 , e σ 2 y 2 / √ 2 , ··· , e σ n y n / √ 2 · . c) Let r ij denote the element on the ith row and the jth column of a matrix R , where R represents any letter. A , B , and C are M × M matrices. Define D = AB and E = ABC . According to the definition of multification of two matrices, we have d ij = M X k =1 a ik b kj . Show e ij = M X l =1 M X k =1 a ik b kl c lj ....
View
Full
Document
This note was uploaded on 02/11/2010 for the course MATH 6203 taught by Professor Zhu during the Spring '10 term at University of North Carolina Wilmington.
 Spring '10
 Zhu

Click to edit the document details