20e-lecture11

20e-lecture11 - Lecture 11 - Friday April 24th...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Lecture 11 - Friday April 24th jacques@ucsd.edu 11.1 Lagrange Multipliers Let f : R n R be a function defined on a region R described by a functional equation or constraint g ( x ) = 0 and such that f C 1 ( R ). Let be a function defined by ( x, ) = f ( x ) + g ( x ) where is called a Lagrange Multiplier and is to be determined later. Then amongst all points x R and R such that ( x, ) = 0, the extreme points of f is guaranteed to appear. That this is true follows from the theory of implicit functions, and this method is referred to as the method of Lagrange Multipliers. Example 1. Find the dimensions of the box of largest volume which can be fitted inside the sphere x 2 + y 2 + z 2 = 1. Solution. We can assume the sides of the boxes are parallel to the co-ordinate axes, so if ( x,y,z ) is a corner of the box on the sphere with x > 0 and y > 0 and z > 0, then the volume of the box is 8 xyz . By Lagranges Method, to find the maximum volume we have....
View Full Document

Page1 / 2

20e-lecture11 - Lecture 11 - Friday April 24th...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online