{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

NIPS2009_0174_slide - Multilabel Prediction via C ompressed...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Multilabel Prediction via C ompressed Sensing Daniel Hsu (UCSD), Sham M. Kakade (TTI-C), John Langford (Yahoo!), Tong Zhang (Rutgers) Goal: multilabel prediction; # of possible labels d is very large. : {car7 robot, lazer eyes} E Rd (year : 17 yI‘ObOt : 1: ylazer eyes Z 1) What we exploit: output sparsity, i.e. E[y|a:] is k—sparse, k << d. \ r 827“ Training and PI‘EWA e Rde, m = 0(klog d) a {(51% y )} '—> {(9371431)} '—> gzx—mum Training data ’\ Compressed training data Predictor of compressed labels Compressed Sparse sensing reconstruction a: H §($)6Rm ¥> yeRd Test point Predicted compressed label Reconstructed sparse label a ...
View Full Document

{[ snackBarMessage ]}