finalexamformulas

finalexamformulas - t = r √ n-2 √ 1-r 2 • r 2 = SSR...

This preview shows page 1. Sign up to view the full content.

STAT 212: Final Exam Formulas ¯ x = 1 n n X i =1 x i s 2 = 1 n - 1 n X i =1 ( x i - ¯ x ) 2 = 1 n - 1 ( n X i =1 x 2 i - ( n i =1 x i ) 2 n ) s = s 2 r = 1 n - 1 n X i =1 ± x i - ¯ x s x ²± y i - ¯ y s y ² ˆ y = b 0 + b 1 x ; b 1 = r s y s x , b 0 = ¯ y - b 1 ¯ x μ X = X x i p i σ 2 X = X ( x i - μ X ) 2 p i σ 2 a + bX = b 2 σ 2 X σ 2 X + Y = σ 2 X + σ 2 Y + 2 ρσ X σ Y σ 2 X - Y = σ 2 X + σ 2 Y - 2 ρσ X σ Y μ ¯ x = μ ; σ ¯ x = σ n P ( X = k ) = n ! k !( n - k )! p k (1 - p ) n - k ; μ = np, σ = p np (1 - p ) P ( X = k ) = e - μ μ k k ! ¯ x ± z * σ n n = ± z * σ m ² 2 z = ¯ x - μ ( σ/ n ) t = ¯ x - μ ( s/ n ) ¯ x ± t * s n z = x 1 - ¯ x 2 ) - ( μ 1 - μ 2 ) q σ 2 1 n 1 + σ 2 2 n 2 t = x 1 - ¯ x 2 ) - ( μ 1 - μ 2 ) q s 2 1 n 1 + s 2 2 n 2 x 1 - ¯ x 2 ) ± t * s s 2 1 n 1 + s 2 2 n 2 ˆ p ± z * r ˆ p (1 - ˆ p ) n n = ± z * m ² 2 p * (1 - p * ) z = ˆ p - p 0 p p 0 (1 - p 0 ) /n p 1 - ˆ p 2 ) ± z * s ˆ p 1 (1 - ˆ p 1 ) n 1 + ˆ p 2 (1 - ˆ p 2 ) n 2 z = p 1 - ˆ p 2 ) r ˆ p (1 - ˆ p ) ³ 1 n 1 + 1 n 2 ´ , ˆ p = X 1 + X 2 n 1 + n 2 SST = Total SS , SSR = Regression SS , SSE = Residual SS SST = SSE + SSR SSE = n X i =1 ( y i - ˆ y i ) 2 = ( n - 1) s 2 y (1 - r 2 ) SST = n X i =1 ( y i - ¯ y ) 2 , SSR = n X i =1 y i - ¯ y ) 2 s = r SSE n - 2 t = b 1 - β 1 SE b 1 SE b 1 = s p ( n - 1) s 2 x
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: t = r √ n-2 √ 1-r 2 • r 2 = SSR SST = 1-SSE SST • ˆ y ± t * SE ˆ μ , SE ˆ μ = s s 1 n + ( x *-¯ x ) 2 ( n-1) s 2 x • ˆ y ± t * SE ˆ y , SE ˆ y = s s 1 + 1 n + ( x *-¯ x ) 2 ( n-1) s 2 x • s = s SSE n-p-1 • t = b i-β i SE b i • MSR = SSR DFR , MSE = SSE DFE , F = MSR MSE • adj r 2 = 1-SSE / ( n-p-1) SST / ( n-1)...
View Full Document

This note was uploaded on 02/16/2010 for the course STAT 212 taught by Professor Holt during the Fall '08 term at UVA.

Ask a homework question - tutors are online