mont4e_sm_ch03_sec04 - 3-38. The sum of the probabilities...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3-38. The sum of the probabilities is 1 and all probabilities are greater than or equal to zero; pmf: f1/8) = 0.2, f(1/4) = 0.7, f(3/8) = 0.1 a) P(X≤1/18) = 0 b) P(X≤1/4) = 0.9 c) P(X≤5/16) = 0.9 d) P(X>1/4) = 0.1 e) P(X≤1/2) = 1 Section 3-4 3-39. Mean and Variance μ = E ( X ) = 0 f (0) + 1 f (1) + 2 f (2) + 3 f (3) + 4 f (4) = 0(0.2) + 1(0.2) + 2(0.2) + 3(0.2) + 4(0.2) = 2 V ( X ) = 0 2 f (0) + 12 f (1) + 2 2 f (2) + 3 2 f (3) + 4 2 f (4) − μ 2 = 0(0.2) + 1(0.2) + 4(0.2) + 9(0.2) + 16(0.2) − 2 2 = 2 3- 40. Mean and Variance for random variable in exercise 3-14 μ = E ( X ) = 0 f (0) + 1.5 f (1.5) + 2 f (2) + 3 f (3) = 0(1 / 3) + 1.5(1 / 3) + 2(1 / 6) + 3(1 / 6) = 1.333 V ( X ) = 0 2 f (0) + 1.5 2 f (1) + 2 2 f (2) + 3 2 f (3) − μ 2 = 0(1 / 3) + 2.25(1 / 3) + 4(1 / 6) + 9(1 / 6) − 1.333 2 = 1.139 3-41. Determine E(X) and V(X) for random variable in exercise 3-15 . μ = E ( X ) = −2 f ( −2) − 1 f (−1) + 0 f (0) + 1 f (1) + 2 f (2) = −2(1 / 8) − 1( 2 / 8) + 0(2 / 8) + 1( 2 / 8) + 2(1 / 8) = 0 V ( X ) = −2 2 f (−2) − 12 f (−1) + 0 2 f (0) + 12 f (1) + 2 2 f (2) − μ 2 = 4(1 / 8) + 1(2 / 8) + 0(2 / 8) + 1(2 / 8) + 4(1 / 8) − 0 2 = 1.5 3-42. Determine E(X) and V(X) for random variable in exercise 3-16 μ = E ( X ) = 1 f (1) + 2 f (2) + 3 f (3) = 1(0.5714286) + 2(0.2857143) + 3(0.1428571) = 1.571429 V ( X ) = 12 f (1) + 22 f (2) + 32 f (3) + − μ 2 = 1.428571 3-43. Mean and variance for exercise 3-17 μ = E ( X ) = 0 f (0) + 1 f (1) + 2 f (2) + 3 f (3) + 4 f (4) = 0(0.04) + 1(0.12) + 2(0.2) + 3(0.28) + 4(0.36) = 2.8 V ( X ) = 0 2 f (0) + 12 f (1) + 2 2 f (2) + 3 2 f (3) + 4 2 f (4) − μ 2 = 0(0.04) + 1(0.12) + 4(0.2) + 9(0.28) + 16(0.36) − 2.8 2 = 1.36 3-6 3-44. Mean and variance for exercise 3-18 E( X ) = 3 ∞ ⎛1⎞ 3 ∞ ⎛1⎞ 1 x⎜ ⎟ = ∑ x ⎜ ⎟ = ∑ ⎝ 4 ⎠ 4 x=1 ⎝ 4 ⎠ 3 4 x =0 h( a ) = ∑ a x = x =1 ∞ x x The result uses a formula for the sum of an infinite series. The formula can be derived from the fact that the series to sum is the derivative of a 1− a with respect to a. For the variance, another formula can be derived from the second derivative of h(a) with respect to a. Calculate from this formula 3 ∞ ⎛1⎞ 3 ∞ ⎛1⎞ 5 E( X ) = ∑ x 2 ⎜ ⎟ = ∑ x 2 ⎜ ⎟ = 4 x =0 ⎝ 4 ⎠ 4 x =1 ⎝ 4 ⎠ 9 514 2 2 Then V ( X ) = E ( X ) − [E ( X ) ] = − = 999 2 x x 3-45. Mean and variance for random variable in exercise 3-19 μ = E ( X ) = 0 f (0) + 1 f (1) + 2 f (2) = 0(0.033) + 1(0.364) + 2(0.603) = 1.57 V ( X ) = 02 f (0) + 12 f (1) + 22 f (2) − μ 2 = 0(0.033) + 1(0.364) + 4(0.603) − 1.57 2 = 0.3111 3-46. Mean and variance for exercise 3-20 μ = E ( X ) = 0 f (0) + 1 f (1) + 2 f (2) + 3 f (3) = 0(8 ×10−6 ) + 1(0.0012) + 2(0.0576) + 3(0.9412) = 2.940008 V ( X ) = 02 f (0) + 12 f (1) + 22 f (2) + 32 f (3) − μ 2 = 0.05876096 3-47. Determine x where range is [0,1,2,3,x] and mean is 6. μ = E ( X ) = 6 = 0 f (0) + 1 f (1) + 2 f (2) + 3 f (3) + xf ( x) 6 = 0(0.2) + 1(0.2) + 2(0.2) + 3(0.2) + x(0.2) 6 = 1.2 + 0.2 x 4.8 = 0.2 x x = 24 3-7 3-48. (a) F(0)=0.17 Nickel Charge: X 0 2 3 4 CDF 0.17 0.17+0.35=0.52 0.17+0.35+0.33=0.85 0.17+0.35+0.33+0.15=1 (b)E(X) = 0*0.17+2*0.35+3*0.33+4*0.15=2.29 V(X) = ∑ f ( x )( x − μ ) i =1 i i 4 2 = 1.5259 3-49. X = number of computers that vote for a left roll when a right roll is appropriate. µ = E(X)=0*f(0)+1*f(1)+2*f(2)+3*f(3)+4*f(4) = 0+0.0003999+2*5.999*10-8+3*3.9996*10-12+4*1*10-16= 0.0004 V(X)= ∑ f ( x )( x − μ ) i =1 i i 4 5 2 = 0.00039996 3-50. µ=E(X)=350*0.06+450*0.1+550*0.47+650*0.37=565 V(X)= σ= ∑ f ( x )( x − μ ) i =1 i 2 =6875 V ( X ) =82.92 3-51. (a) Transaction New order Payment Order status Delivery Stock level total Frequency 43 44 4 5 4 100 2 µ= Selects: X 23 4.2 11.4 130 0 f(X) 0.43 0.44 0.04 0.05 0.04 E(X) = 23*0.43+4.2*0.44+11.4*0.04+130*0.05+0*0.04 =18.694 V(X) = ∑ f ( x )( x − μ ) i =1 i 5 = 735.964 σ = V ( X ) = 27.1287 (b) Transaction New order Payment Order status Delivery Stock level total Frequency 43 44 4 5 4 100 All operation: X 23+11+12=46 4.2+3+1+0.6=8.8 11.4+0.6=12 130+120+10=260 0+1=1 f(X) 0.43 0.44 0.04 0.05 0.04 µ = E(X) = 46*0.43+8.8*0.44+12*0.04+260*0.05+1*0.04=37.172 3-8 V(X) = ∑ f ( x )( x − μ ) i =1 i 5 2 =2947.996 σ = V ( X ) = 54.2955 Section 3-5 3-52. 3-53. 3-54. E(X) = (0+100)/2 = 50, V(X) = [(100-0+1)2-1]/12 = 850 E(X) = (3+1)/2 = 2, V(X) = [(3-1+1)2 -1]/12 = 0.667 X=(1/100)Y, Y = 15, 16, 17, 18, 19. E(X) = (1/100) E(Y) = 2 1 ⎛ 15 + 19 ⎞ ⎜ ⎟ = 0.17 mm 100 ⎝ 2 ⎠ 2 ⎛ 1 ⎞ ⎡ (19 − 15 + 1) − 1⎤ 2 V (X ) = ⎜ ⎟⎢ ⎥ = 0.0002 mm 100 ⎠ ⎣ 12 ⎝ ⎦ 3-55. ⎛1⎞ ⎛1⎞ ⎛1⎞ E ( X ) = 2⎜ ⎟ + 3⎜ ⎟ + 4⎜ ⎟ = 3 ⎝3⎠ ⎝3⎠ ⎝3⎠ in 100 codes the expected number of letters is 300 2 2⎛1⎞ 2⎛1⎞ 2⎛1⎞ 2 V ( X ) = (2 ) ⎜ ⎟ + (3) ⎜ ⎟ + (4 ) ⎜ ⎟ − (3) = 3 ⎝3⎠ ⎝3⎠ ⎝ 3⎠ in 100 codes the variance is 6666.67 3-56. X = 590 + 0.1Y, Y = 0, 1, 2, ..., 9 E(X) = ⎛0+9⎞ 590 + 0.1⎜ ⎟ = 590.45 mm ⎝2⎠ 2 2 ⎡ (9 − 0 + 1) − 1 ⎤ V ( X ) = (0.1) ⎢ ⎥ = 0.0825 12 ⎦ ⎣ mm2 3-57. a = 675, b = 700 (a) µ = E(X) = (a+b)/2= 687.5 V(X) = [(b – a +1)2 – 1]/12= 56.25 (b) a = 75, b = 100 µ = E(X) = (a+b)/2 = 87.5 V(X) = [(b – a + 1)2 – 1]/12= 56.25 The range of values is the same, so the mean shifts by the difference in the two minimums (or maximums) whereas the variance does not change. X is a discrete random variable. X is discrete because it is the number of fields out of 28 that has an error. However, X is not uniform because P(X=0) ≠ P(X=1). The range of Y is 0, 5, 10, ..., 45, E(X) = (0+9)/2 = 4.5 E(Y) = 0(1/10)+5(1/10)+...+45(1/10) = 5[0(0.1) +1(0.1)+ ... +9(0.1)] = 5E(X) = 5(4.5) = 22.5 V(X) = 8.25, V(Y) = 52(8.25) = 206.25, σY = 14.36 3-58. 3-59. 3-9 ...
View Full Document

This note was uploaded on 02/17/2010 for the course IE 33214 taught by Professor Feng during the Spring '10 term at University of Illinois at Urbana–Champaign.

Ask a homework question - tutors are online