{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# OHW 8 - terry(ect328 oldhomework 08 Turner(59130 This...

This preview shows pages 1–4. Sign up to view the full content.

terry (ect328) – oldhomework 08 – Turner – (59130) 1 This print-out should have 13 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 (part 1 of 4) 10.0 points Two charges are located in the ( x, y ) plane as shown in the figure below. The fields pro- duced by these charges are observed at the origin, p = (0 , 0). The Coulomb constant is 8 . 98755 × 10 9 N · m 2 / C 2 . x y + Q + Q p b a a Use Coulomb’s law to find the x -component of the electric field at p . 1. E x = 2 k e Q a 2 + b 2 2. E x = k e Q a ( a 2 + b 2 ) 3 / 2 3. E x = - 2 k e Q a 2 + b 2 4. E x = 0 correct 5. E x = 4 k e Q a ( a 2 + b 2 ) 3 / 2 6. E x = 2 k e Q a ( a 2 + b 2 ) 3 / 2 7. E x = - 2 k e Q a ( a 2 + b 2 ) 3 / 2 8. E x = - 4 k e Q a ( a 2 + b 2 ) 3 / 2 9. E x = - k e Q a ( a 2 + b 2 ) 3 / 2 Explanation: Let : k e = 8 . 98755 × 10 9 N · m 2 / C 2 . + Q 1 + Q 2 p b a a r 1 = radicalBig x 2 1 + y 2 1 = radicalbig a 2 + b 2 . r 2 = radicalBig x 2 2 + y 2 2 = radicalBig ( - a ) 2 + b 2 = radicalbig a 2 + b 2 , so r 2 = r 1 = r . θ θ E 1 E 2 + Q 1 + Q 2 where | sin θ | = b r = b a 2 + b 2 | cos θ | = a r = a a 2 + b 2 . In the x -direction, the contributions from the two charges are E x 1 = - k e (+ Q ) r 2 1 | cos( θ ) | (1) = - k e (+ Q ) ( a 2 + b 2 ) a a 2 + b 2 = - k e Q a ( a 2 + b 2 ) 3 / 2 E x 2 = - k e ( - Q ) r 2 2 | cos( θ ) | (2) = - k e ( - Q ) ( a 2 + b 2 ) a a 2 + b 2 = + k e Q a ( a 2 + b 2 ) 3 / 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
terry (ect328) – oldhomework 08 – Turner – (59130) 2 E x = E x 1 + E x 2 = 0 . 002 (part 2 of 4) 10.0 points Let: V = 0 at infinity. Find the electric potential at p . 1. V y = + 2 k e Q a 2 + b 2 correct 2. V y = 4 k e Q a 2 + b 2 3. V y = 0 4. V y = - 2 k e Q a a 2 + b 2 5. V y = - 4 k e Q a a 2 + b 2 6. V y = 2 k e Q a a 2 + b 2 7. V y = - 4 k e Q a 2 + b 2 8. V y = - 2 k e Q a 2 + b 2 9. V y = 4 k e Q a a 2 + b 2 Explanation: The potential for a point charge + Q is V = k e + Q r . For the two charges in this problem, we have V 1 = k e + Q a 2 + b 2 . V 2 = k e + Q a 2 + b 2 . V p = V 1 + V 2 = k e a 2 + b 2 [+ Q + (+ Q )] = + 2 k e Q a 2 + b 2 . 003 (part 3 of 4) 10.0 points Find the y -component of the electric field at p . 1. E y = + 2 k e Q a 2 + b 2 2. E y = - 2 k e Q a 2 + b 2 3. E y = 0 4. E y = + k e Q b ( a 2 + b 2 ) 3 / 2 5. E y = + 2 k e Q b ( a 2 + b 2 ) 3 / 2 correct 6. E y = - k e Q b ( a 2 + b 2 ) 3 / 2 7. E y = + 4 k e Q b ( a 2 + b 2 ) 3 / 2 8. E y = - 2 k e Q b ( a 2 + b 2 ) 3 / 2 9. E y = - 4 k e Q b ( a 2 + b 2 ) 3 / 2 Explanation: r = ( x 2 + y 2 ) 1 / 2 = ( a 2 + b 2 ) 1 / 2 and ∂ r ∂y = 1 2 ( y 2 + x 2 ) - 1 / 2 · 2 y ∂ V ∂r = - k e - Q r 2 . To calculate the electric field from the poten- tial E y = - ∂ V ∂y = - ∂ V ∂r ∂ r ∂y . So E y = k e - Q r 2 bracketleftbigg 1 2 ( y 2 + x 2 ) - 1 / 2 · 2 y bracketrightbigg = k e - Q r 2 · cos(Δ θ ) (3) = k e - Q r 2 · y r (4) = k e - Q y r 3 = + 2 k e Q b ( a 2 + b 2 ) 3 / 2 .
terry (ect328) – oldhomework 08 – Turner – (59130) 3 004 (part 4 of 4) 10.0 points Point p is the origin (0 , 0) and point s is at (0 , s ). Find V (0 , 0) - V (0 , s ) [ e.g. , ( V p - V s )]. 1. V p - V s = 2 k e Q radicalbig a 2 + ( s + b ) 2 - k e Q a 2 + b 2 2. V p - V s = 4 k e Q radicalbig a 2 + ( s + b ) 2 - 2 k e Q a 2 + b 2 3. V p - V s = 2 k e Q radicalbig a 2 + ( s + b ) 2 - 2 k e Q a 2 + b 2 4. V p - V s = 4 k e Q a 2 + b 2 - 2 k e Q radicalbig a 2 + ( s + b ) 2 5. V p - V s = 4 k e Q radicalbig a 2 + ( s + b ) 2 6. V p - V s = 2 k e Q a 2 + ( s + b ) 2 - 2 k e Q a 2 + b 2 7. V p - V s = 2 k e Q a 2 + b 2 - 2 k e Q radicalbig a 2 + ( s + b ) 2 correct 8. V p - V s = 4 k e Q a 2 + ( s + b ) 2 9. V p - V s = 4 k e Q a 2 + b 2 - 2 k e Q a 2 + ( s + b ) 2 10.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}