Problem2.5.1e - Problem 2.5.1(e The problem statement is 2...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Problem 2.5.1(e) The problem statement is : (1) 2 u ÅÅÅÅÅÅÅÅÅ x 2 + 2 u ÅÅÅÅÅÅÅÅÅ y 2 = 0 BC1 : u H 0, y L = 0 BC2 : u H L, y L = 0 BC3 : u H x, 0 L - u ÅÅÅÅÅÅÅ y H x, 0 L = 0 BC4 : u H x, H L = f H x L We will use separation of variables and look for a solution of the form u H x, y L = h H x L f H y L . Substituting this form for the solution into the PDE gives: (2) 1 ÅÅÅÅ h 2 h ÅÅÅÅÅÅÅÅÅ x 2 = - 1 ÅÅÅÅ f 2 f ÅÅÅÅÅÅÅÅÅ y 2 = -l The appropriate eigenvalue problem is (3) 2 h ÅÅÅÅÅÅÅÅÅ x 2 + l h = 0 BC1 : h H 0 L = 0 BC2 : h H L L = 0 The solution is (4) h H x L = c 1 Sin H n p x ê L L where (5) l = I n p ÅÅÅÅÅÅÅ L M 2 , n = 1, 2, 3 Next we solve for the function f H y L . The governing equation is: (6) 2 f ÅÅÅÅÅÅÅÅÅ y 2 - lf = 0 BC1 : f H 0 L - „f ÅÅÅÅÅÅÅ y H 0 L = 0 The solution is (7) f H y L = c 2 è!!! l Cosh I è!!! l y M + c 2 Sinh I è!!! l y M Hence the general solution is
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
(8) u H x, y L = n = 1 A n 9 è!!! l Cosh I è!!! l y M + Sinh I è!!! l y M= Sin H n p x ê L L To find the coefficients, we use the orthogonality properties of the eigenfunctions, and BC4:
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/18/2010 for the course ENGINEEING 32145 taught by Professor Stroeve during the Fall '09 term at Universidad de Carabobo.

Page1 / 2

Problem2.5.1e - Problem 2.5.1(e The problem statement is 2...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online