Problem5.3.4b - Problem 5.3.4(b) We assume the form for the...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Problem 5.3.4(b) We assume the form for the solution (1) u H x, t L = f H x L h H t L Substituting into the PDE gives (2) 1 ÅÅÅÅ h h ÅÅÅÅÅÅÅ t = 1 ÅÅÅÅ f i k j j k 2 f ÅÅÅÅÅÅÅÅÅ x 2 - V 0 „f ÅÅÅÅÅÅÅ x y { z z = -l 2 The appropriate eigenvalue problem is (3) k 2 f ÅÅÅÅÅÅÅÅÅ x 2 - V 0 „f ÅÅÅÅÅÅÅ x + l 2 f = 0, f H 0 L = 0, f H L L = 0 To find the general solution we let f H x L = e a x . Substituting into the ODE gives (4) H k a 2 - V 0 a + l 2 L e a x = 0, or (5) k a 2 - V 0 a + l 2 = 0 Since we need to have oscillatory solutions, the eigenvalues must be complex. Thus (6) a = V 0 "##################### V 0 2 - 4 l 2 k ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ 2 k = V 0 Â "################ ###### 4 l 2 k - V 0 2 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅ 2 k Thus the general solution is (7) f H x L = c 1 e a 1 x + c 2 e a 2 x where (8) a
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/18/2010 for the course ENGINEEING 32145 taught by Professor Stroeve during the Fall '09 term at Universidad de Carabobo.

Page1 / 2

Problem5.3.4b - Problem 5.3.4(b) We assume the form for the...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online