A3-1 - Sedma Nacionalna Konferencija so Me|unarodno U~estvo...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
AIRCRAFT GAS TURBINE ENGINE CONDITION MONITORING SYSTEM Arif Pashayev 1 , Djahangir Askerov 1 , Ramiz Sadiqov 1 , Parviz Abdullayev 1 1 Azerbaijan National Academy of Aviation - AZ1045, Azerbaijan, Baku, Bina, 25 th km tel: (99412) 439-11-61, fax: (99412) 497-28-29, e-mail: sadixov@mail.ru Abstract – Researches show that probability- statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients’ changes are analysed. Researches of skewness and kurtosis coefficients values’ changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes’ dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values’ changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage- by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made. Keywords - aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics 1. INTRODUCTION One of the important maintenance requirements of the modern aviation GTE on condition is the presence of efficient parametric technical diagnostic system. As it is known the GTE diagnostic problem of the aircraft’s is mainly in the fact that onboard systems of the objective control do not register all engine work parameters. This circumstance causes additional manual registration of other parameters of GTE work. Consequently there is the necessity to create the diagnostic system providing the possibility of GTE condition monitoring and elaboration of exact recommendation on the further maintenance of
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 6

A3-1 - Sedma Nacionalna Konferencija so Me|unarodno U~estvo...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online