{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Pertemuan 7 Integral

# Pertemuan 7 Integral - INTEGRAL Materi Konsep Integral...

This preview shows pages 1–14. Sign up to view the full content.

INTEGRAL

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Materi Konsep Integral Integral Tak Tentu Rumus Dasar Integral Integrasi Tertentu Integrasi Parsial Berbagai Metoda Integrasi – Integration by part – Metoda substitusi – Integrasi pecahan rasional
Materi Penggunaan Integral – Luas Daerah Bidang Rata – Volume Benda dalam Ruang Lempengan, Cakram, Cincin – Volume Benda Putar – Panjang Kurva pada Bidang – Kerja

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Integral adalah kebalikan dari diferensial 3 2 ( 5) 3 d x x dx + = 2 3 3 x dx x C = + 2 3 3 x dx x C = + Konstanta integral (C) harus selalu dicantum- kan dalam suatu hasil integrasi suatu fungsi
( ) ( ) dF x f x dx = Maka fungsi F(x) dapat diperoleh kembali dengan integrasi: ( ) ( ) F x f x dx C = + Karena nilai C dapat sembarang, maka F(x) disebut integral tak tentu dari f(x).

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
( ) ( ) ( ) x b x a f x dx F b F a = = = Jika fungsi f(x) adalah suatu fungsi kontinyu dalam interval x=a dan x=b, maka x=a Æ batas bawah integrasi x=b Æ batas atas integrasi Integral Tertentu

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
6 (5 4) x dx 6 x dx mirip Penyelesaian, dimisalkan (5x-4) = z 1 1 5 dx dz dz dx = = Æ dimana: dx z dx z dz dz =
6 6 7 1 1 1 5 5 7 z dx z dz z C = = + 6 7 1 (5 4) (5 4) 35 x dx x C = + cos(7 2) x dx + = 5 4 x e dx + = Coba selesaikan integrasi berikut ini:

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
'( ) ( ) f x dx f x '( ) ( ) f x f x dx Integrasi dalam bentuk dan Bentuk integrasi dapat dibawa ke bentuk rumus dasar integral '( ) 1 [ ( )] ( ) ( ) f x dx d f x f x f x = '( ) ( ) ( ) [ ( )] f x f x dx f x d f x =
2 2 2 3 ln( 3 5) 3 5 x dx x x C x x + = + + + 2 2 1 tan sec tan 2 x x dx x C = + Contoh: Coba selesaikan integrasi berikut ini: 2 3 6 2 x dx x x = + cos 1 sin x dx x = +

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}