Ch05Word - Chapter5 FN F y x Ffr 1 ,soF = F....

Info icon This preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 5 CHAPTER 5 - Further Applications of Newton’s Laws 1. The friction is kinetic, so  F fr  =  μ k F N .  With constant velocity,  the acceleration is zero.   Using the force diagram for the crate, we can write   ? F  =  m a : x -component:   F  –  μ k F N  = 0;  y -component:   F N   –  Mg  = 0. Thus  F N   Mg , and  F  =  μ k F N  =  μ k Mg   = (0.30)(12.0 kg)(9.80 m/s 2 ) =       35 N . If  μ k  = 0, there is        no force        required to maintain constant speed. 2. ( a ) In general, static friction is given by  F fr  =  μ s F N .  Immediately  before the box starts to move, the static friction force reaches  its maximum value:  F fr,max  =  μ s F N .  For the instant before the box  starts to move, the acceleration is zero. Using the force diagram for the box, we can write   ? F  =  m a : x -component:   F  –  μ s F N  = 0;  y -component:   F N   –  Mg  = 0. Thus  F N   Mg , and  F  =  μ s F N  =  μ s Mg  ; 25.0 N =  μ s (6.0 kg)(9.80 m/s 2 ), which gives       μ s  = 0.43 . ( b ) When the box accelerates and the friction changes to kinetic, we have F  –  μ k F N  =  Ma ; 25.0 N –  μ k (6.0 kg)(9.80 m/s 2 ) = (6.0 kg)(0.50 m/s 2 ), which gives       μ k  = 0.37 . Page  1
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Chapter 5 3. ( a ) ( b ) ( c ) In ( a ) the friction is static and opposes the impending motion down the plane. In ( b ) the friction is kinetic and opposes the motion down the plane. In ( c ) the friction is kinetic and opposes the motion up the plane. 4. If we simplify the forces so that there is one normal force,  we have the diagram shown.  We can write   ? F  =  m a : x -component:  –  F fr  +  mg  sin  θ  = 0;  y -component:   F N   –  mg  cos  θ  = 0. When we combine the two equations, we have tan  θ  =  F fr / F N  =  μ s Thus we have tan  θ max  =  μ s  = 0.8,         θ max  = 39 ° . 5. If we simplify the forces so that there is one normal force, we have the  diagram shown.  The friction force provides the acceleration.   We can write   ? F  =  m a : Page  2
Image of page 2
Chapter 5 x -component:   F fr  =  Ma y -component:   F N   –  Mg  = 0. Thus we have a  =   F fr / M  =  μ s F N / M  =  μ s g . The minimum value of  μ s  is  μ s,min  =  a / g  =        0.20 . 6. If we simplify the forces so that there is one normal force, we have the  diagram shown.  The friction force provides the acceleration.   We can write   ? F  =  m a : x -component:   F fr  =  Ma y -component:   F N   –  Mg  = 0.
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern