final-practice

final-practice - we„r QIfGP €‚eg„sgi psxev iˆewF the...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: we„r QIfGP €‚eg„sgi psxev iˆewF the (rst two midterms —nd pr—™ti™e midterms —s — p—rt of the pr—™ti™e (n—lF €le—se noteX the —im of this pr—™ti™e (n—l is to give you sever—l pro˜lems on the m—teri—l not ™overed ˜y the (rst two midterms —nd pr—™ti™e midtermsF ‰ou should therefore tre—t IF vet f (x) = sin xF pind n so th—t „—ylor9s polynomi—l of degree n —round 0 —pproxim—tes sin(1) to within 10−2 F tustify your —nswerF PF vet f (x) = 2x + 4 . x3 − 1 f (x)dxF ixpress f (x) —s — sum of terms using p—rti—l fr—™tionsF …se this to ev—lu—te QF pind the „—ylor series for the fun™tion f (x) = ln(x − 1)F hetermine its r—dius —nd interv—l of ™onvergen™eF 1 RF pind the power series represent—tion of the fun™tion F hetermine its r—dius —nd 2 interv—l of ™onvergen™eF SF pind the limit of the sequen™e an = n1/n F TF ss the improper integr—l 0 ∞ (1 − x) sin(ex )dx ™onvergent or divergentc ixpl—inF UF pind the surf—™e —re— of the surf—™e of revolution o˜t—ined ˜y rot—ting the p—r—˜ol— y = x2 D 0 ≤ x ≤ 1D —˜out the y E—xisF VF …se the —r™length formul— to (nd the length of the ™ir™le of r—dius 1F WF hetermine whether the following series —re —˜solutely ™onvergentD ™ondition—lly ™onverE 1 1 gentD or divergentX @—A (−1)n n+sin(n) Y @˜A (−1)n n2 +sin(n) Y @™A e−n F I ...
View Full Document

Ask a homework question - tutors are online