ch29basicprobabilitylaws

ch29basicprobabilitylaws - Chapter29: Chapter29:...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 29:  Chapter 29:  Basic Probability Laws Basic Probability Laws A. A. Outcome Space and Events Outcome Space and Events Consider a random experiment such as the rolling of  Consider a random experiment such as the rolling of  a fair, ordinary die.  a fair, ordinary die.  The totality of all possible outcomes is called the  The totality of all possible outcomes is called the  outcome space outcome space  or the   or the  sample space sample space , denoted  , denoted  by  by  S S . . Let individual outcomes be  Let individual outcomes be  Then in set language, Then in set language, A subset  A subset  A A  of  of  S  S  is a partial collection of outcomes,   is a partial collection of outcomes,  and is called an  and is called an  event event . . ,....... ,........ , , 2 1 k e e e ,....... } ,........ , , { 2 1 k e e e S =
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
For example, in the rolling of a fair dice, For example, in the rolling of a fair dice, A=Big={4,5,6} B=Even={2,4,6} C=Top={6} D=Small={1,2,3} E=Odd={1,3,5} Some terms: (i) Union event:  AUB[={2,4,5,6} Note:         = A or B or both } 6 , 5 , 4 , 3 , 2 , 1 { = S B A
Background image of page 2
(ii) Intersection event: Note:             = A  and  B (iii) Sure event: S[={1,2,3,4,5,6} (iv) Impossible event:                the empty set (v) Complementary  event:  A‘=Non-A[=D] }] 6 , 4 { [ = B A B A {}] [ = φ
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
(vi) Mutually exclusive  events: C and D are mutually  exclusive if  (vii)  Exhaustive events:                     are exhaustive events if (viii) Partition:  If                are mutually exclusive  and exhaustive, then they form a  partition of  S [e.g. B and E above] φ = D C k A A A ,........ , , 2 1 S A A A k = ........ 2 1 k A A A ,........ , , 2 1
Background image of page 4
B. Probability and Probability Laws Suppose                      is an event.  Then, whenever one of these elements turns up, we say that  A  has  occurred. For example, in a game of mahjong, you are “calling” for a 2-,5-, or 8- circle. Then the event A={2,5,8} is your  bingo event. Whenever, any one of these turns up, the bingo event is achieved. Naturally, when we are interested in a particular event,  A,  we would like  to know the  chance  (i.e.  probability ) that  will occur.  If  has more elements  (i.e.       =big),  then the chance will be bigger.  Otherwise, it will be smaller. 
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/22/2010 for the course FBE STAT0302 taught by Professor Unknown during the Spring '10 term at HKU.

Page1 / 32

ch29basicprobabilitylaws - Chapter29: Chapter29:...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online