hw07_p04_answer - 0.00000 0.00000 0.00000 0.25000 0.23330...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Sheet1 Page 1 Problem 4. Predictor-corrector method using the trapezoidal rule By using the predictor-corrector method, we can correct a problem we confront in Euler method where the error gets larger as 'x' is farther from the initial value, 'x1'. And the error gets smaller as h gets smaller. h = 0.25000 xy(x)Y(x)error 0.00000 0.00000 0.00000 0.00000 0.25000 0.22702 0.23529 -0.00827 0.50000 0.38414 0.40000 -0.01586 0.75000 0.46213 0.48000 -0.01787 1.00000 0.48485 0.50000 -0.01515 1.25000 0.47677 0.48780 -0.01104 1.50000 0.45413 0.46154 -0.00741 1.75000 0.42602 0.43077 -0.00475 2.00000 0.39705 0.40000 -0.00295 h = 0.12500 xy(x)Y(x)error 0.00000
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 0.00000 0.00000 0.00000 0.25000 0.23330 0.23529 -0.00200 0.50000 0.39650 0.40000 -0.00350 0.75000 0.47627 0.48000 -0.00373 1.00000 0.49695 0.50000 -0.00305 1.25000 0.48565 0.48780 -0.00216 1.50000 0.46013 0.46154 -0.00141 1.75000 0.42989 0.43077 -0.00087 2.00000 0.39948 0.40000 -0.00052 h = 0.06250 xy(x)Y(x)error 0.00000 0.00000 0.00000 0.00000 0.25000 0.23481 0.23529 -0.00048 0.50000 0.39918 0.40000 -0.00082 0.75000 0.47915 0.48000 -0.00085 1.00000 0.49931 0.50000 -0.00069 1.25000 0.48732 0.48780 -0.00048 1.50000 0.46123 0.46154 -0.00031 1.75000 0.43058 0.43077 -0.00019 2.00000 0.39989 0.40000 -0.00011...
View Full Document

This note was uploaded on 02/22/2010 for the course CHE 348 taught by Professor Chelikowsky during the Spring '08 term at University of Texas.

Ask a homework question - tutors are online