calculus_notes

calculus_notes - Notes on Calculus by Dinakar Ramakrishnan...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Notes on Calculus by Dinakar Ramakrishnan 253-37 Caltech Pasadena, CA 91125 Fall 2001 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Contents 0 Logical Background 4 0 .1 S e t s ........................................ 4 0 .2 F un c t ion s ..................................... 5 0 .3 C a rd in a l i ty . ................................... 5 0 .4 Equ iv a l en c eR e la t s............................... 6 1 Real and Complex Numbers 8 1 .1 D e s i r edP r op e r t i e s ................................ 8 1.2 Natural Numbers, Well Ordering, and Induction . . . . . . . . . . . . . . . . 10 1 .3 In t eg e r s ...................................... 1 2 1 .4 Ra t a lNumb e r s................................. 1 3 1 .5 O e r edF i e ld s .................................. 1 5 1 .6 R ea e r s................................... 1 6 1 .7 Ab s o lu t eV a e .................................. 2 0 1 .8 C omp l exNumb e r 2 1 2 Sequences and Series 24 2 .1 C onv e r g c eo fs equ c e s............................. 2 4 2 .2 C au chy sc r i t e r ion. ................................ 2 8 2 on s t ru c t iono fR e r sr ev i s i t ed. .................... 2 9 2.4 In±nite series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 .5 T e s t sfo rC e r g c e............................... 3 3 2 .6 A l t e rn a t gs e r i e 3 5 3 Basics of Integration 38 3.1 Open, closed and compact sets in R ....................... 3 8 3 .2 In t r a l so fbound edfun c t s.......................... 4 1 3.3 Integrability of monotone functions . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Computation of b R a x s dx .............................. 4 5 3 .5 Examp l fan - t r ab l e ,bound c t ion . ............... 4 7 3 .6 P r e r t i e fin t r a l s .............................. 4 8 3.7 The integral of x m r i s i t ed ,andpo lyn om ia l s ................. 5 0 4 Continuous functions, Integrability 53 4 .1 L im i t sandC t inu i ............................. 5 3 4 .2 S eth r em soncon t ou sfun c t s..................... 5 7 4.3 Integrability of continuous functions . . . . . . . . . . . . . . . . . . . . . . . 59 4 .4 T r ig e t r i cfun c t s ............................. 6 0 4 .5 F c t sw i thd i s con t i t i e 6 4 1
Background image of page 2
5 Improper Integrals, Areas, Polar Coordinates, Volumes 66 5 .1 Imp r op e rIn t eg r a l s ................................ 6 6 5 .2 A r ea s........................................ 6 9 5 .3 P o la rcoo rd in a t e s................................. 7 1 5 .4 V o lum e s...................................... 7 3 5.5 The integral test for inFnite series . . . . . . . . . . . . . . . . . . . . . . . . 75 6 Diferentiation, Properties, Tangents, Extrema 78 6 .1 D e r iv a t e s..................................... 7 8 6 .2 Ru l e so fd e r en t ia t ion ,con s equ c e s...................... 8 1 6 r oo f fth eru l e 8 4 6 .4 T an g t 8 6 6 .5 Ex t r emao e r t iab l efun c t s ....................... 8 7 6 .6 Th em eanv a lu eth eo r em. ............................ 8 8 7 The Fundamental Theorems o± Calculus, Methods o± Integration 91 7 .1 Th efund am t a lth r s............................ 9 1 7 .2 Th eind eFn i t ein t r a l .............................. 9 4 7 .3 In t r a t ionbysub s t i tu t ion. ........................... 9 4 7 .4 In t r a t ionbyp a r t s................................ 9 7 8 Factorization o± polynomials, Integration by partial ±ractions 100 8 .1 L on gd i s ,r t 1 0 0 8.2 ²actorization over C ............................... 1 0 2 8.3 ²actorization over R 1 0 3 8 .4 Th ep a r t lf r a c t iond e compo s i t ion . ...................... 1 0 5 8 .5 In t r a t iono fr a t a lfun c t s......................... 1 0 6 9 Inverse Functions, log, exp, arcsin, ... 110 9 .1 Inv e r s c t s ................................. 1 1 0 9.2 The natural logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9 .3 Th eexpon t c t 1 1 4 9 .4 a r c s ,a r c co s r c t ,e ta l............................ 1 1 9 9 .5 Au s e fu lsub s t i t .............................. 1 2 0 9 .6 App end ix : L ’Hop i t a l sRu l e........................... 1 2 1 10 Taylor’s theorem, Polynomial approximations 124 1 0 .1T a y lo rpo lyn om l 1 2 4 10.2 Approximation to order n 1 2 7 1 0 .3T a y r sR ema ind e o rmu la. .......................... 1 3 0 10.4 The irrationality of e 1 3 5 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
11 Uniform convergence, Taylor series, Complex series 136 11.1 Infnite series oF Functions, convergence . . . . . . . . . . . . . . . . . . . . . 136 1 1 .2T a y lo rs e r i e s....................................
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/22/2010 for the course MA 1a taught by Professor Borodin,a during the Fall '08 term at Caltech.

Page1 / 145

calculus_notes - Notes on Calculus by Dinakar Ramakrishnan...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online