101-2002&2003-1-F10-January2003

101-2002&2003-1-F10-January2003 - ~ ('I-'\ -~ llLl

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Math 101 Calculus I Kuv,·ait University Department of Mathematics Computer Science Final Examination January 12, 2003 Time: 2 hours CalCulators, mobile phones and pagers are not allowed during this exam. Each question is worth 5 points. 1. Find the limit if it exists: (0) lim (X+h)3_X3 h-tO h 1 (b) lim x4 sin3/X x-tO v..0 c 2. Use the definition of the derivative to show that the follmving function IS differentiable at x = ~ : J(x) = { cos(2x - 1) + 4x2 - 2x , 1 2 - 2x if x < 1 - 2 1 if x > 2 \~ Let f (x) = x cos x. Use Rolle's theorem to show that J'I (c) c E (-~,~). 4. Show that the following function is constant on (0, CX») . r3x 1 . F(x) = J - dt x t o for some ( [~EVa)Uate the integral (2 [cos( 1rX) ,_ .,j x3 ] dx J-2 1 +x4 .. 6. Let f(x) = V x . What is the average value of f(x) on [0,4] ? Find a . x2 + 9 . number z that satisfies the conclusion of the mean value theorem for definite integrals. 7. Find the area of the region enclosed by the graph of y = x2 and the lines x ..2 . and y = 0." 8. Find the resulting volume when the region bounded by the graphs of "( . x = (y - 1)2 and x = y + 1 is revolved about the line y = 3.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
\. c.\ \;~ R---c:>c CN- \,"" e.-'?v \...)( -\g .y_ -;K.1 f<. tx+~){- x:. -I( ::: 3?C. 1... (\ ) - a -S'fI \..)~ _ \.''"''
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ~ ('I-'\ -~ llLl )(-&quot;'.:&gt; \.-')(-IIL-----------:::L\. 'f&quot;I&quot;&quot;'\ (Os(:'2 . .. 1)( - \)-\ X ~ '\. .: '-&quot;)&lt;. ..-\ Ix _ 'Ix-2-, '--r...x,'-:&quot;:\-u&lt;.l;S---~ ( J?~x&quot;) ~ G:sx. -?L Sl~X &quot;2&gt;cJi\&lt;:'~1-e5 ~ 8o\:D '£esi) cf ~lk~ rRe-.:rovdi (/i\ E-V;:I'1J~'Lj. \'c. .-tC~)::-&quot;-/'L-::. . f?CK&quot;/L) . \~ce ) e~ ~;J:.s C~(-4Lz.J reJ'L ) ~v. .~ ~ :\?&quot;C(.)-:: G . ,&gt;'X. &quot;--\-.?, - ~ ~C-,c '\ = S ~ db-, ~c.xl ::. ::0 t:-&quot;:&gt;/&lt;&quot;---J-. .. ~Gi. .\. ;..... G:. ~~ ~JriOV1. S Cds ({,,-)-~ d x: ~ S GX&quot;lC)&lt;&quot;\ d x: \ &quot;v-.\-bIT&quot;'--'-\ xl; ~'--d~~r:-olx ~ S2. . oJo. . ~V: If-:-() ~ t= 1-.s CDs l~:n( I cl)( ~ 2:-S G:sc,= J de-:: o. ~;:. '2. ~ ~ = 9-1:\: 6 ~ +-. t. V ::: jY '3 .s ?-~Q~' \\\) --\-~ _ ~_\)l.) ~~ o \:;-=-&amp;&lt;:~ q f cllc~ ~1\ )(--=--=1 ~''::'''9 'I ::: L..-::=;.) 1::-:= 25 ~J1::.-:::. G' .-v . _ r-_ (Ij.-\)...
View Full Document

Page1 / 2

101-2002&amp;amp;2003-1-F10-January2003 - ~ ('I-'\ -~ llLl

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online