{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

102-2005&amp;2006-2-F10-July2006

# 102-2005&amp;2006-2-F10-July2006 - m w’>W 4t...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: m w’ >W 4t: _ ﬁlth/1931115! 27, 2006 Ktinjajt Univei‘SI y .- Math 102 Jeptof Math Sc Comp Sci Final Examination Duration: 2 hours The use of calculator is not allowed. Turn off your mobile phone or pager ‘51 - = * >‘ "f"? y 1. Let ﬁr) = tan"I I +tan_1(ln;r) "12, I > D. ' “I ' V .5- (a) Show that f is one—to-one Over the interval (0,00). («5' ‘ 4- _r 39-“ l (1 point) (b) Find the domain of 1'“. (1 point) (c) Show that P({], 1) is on the graph of f ‘1 and ﬁnd the slope of the tangent line at P. (2 points) 1 ' 2. Evaluate lim+ (sin rjlnx , if it exists. (3 points) :—‘0 3. Evaluate the following integrals. (3 points each) ' sin 23: x/zt:i - 4 . 2 c053 :r. ' —— a b a 2 3 sec :33 dc: d #— dx (a) f1+sin2r x U f a? a: (c) /\$( ) [) V1+sinz ‘ I 4 1 ' . . f Cl. Determine if the im re er inte ral f —-4~u—-—— tie: is conver ent or diver ant, and ﬁnd its value i p p . g 1 #8 + 21' u 1:. g g it is convergent. - , , (3 points) 5. Find the length of the cardioid r : 1 + sin 6. I I (4 points) r1“; El ll? _ ”iii 6. Find the equation, inqectangular coordinates, of the tangent line to the graph'of the polar equation r 2 2 + aim?‘ at the poinmﬁmo 9 =_ O.__ (‘1 l Vi) _ (4 points) 7. Sketch the graphs of the polar equations r 2 cost} and r = 1 facet}1 and ﬁnd the area that lies inside . both graphs. . . y 3,} ”.53 .( ”J h {ng5? (4 points) a» 57.1 _ .--"..~--- . ~._)'s.:a ﬂ \ 8. Consider the curve C given by the parametric equations a” fl». m r: .. .. a; l. I. _ i zzeicost yzeisint, 0315231" (If/CD ‘ v (a) Show that (2 points) ema— er ” ‘1 ‘* (b) The curve C is revolved about the I—ELXlS‘ Find the area of the resulting surface. 1‘ (4 points) vi“ (I skin 00 CO rij f’(\$)= my-F 71—5—27 > 0 for all I > 0. So f is increasing on (0,00) and therefore is (1—1) there. :55”) D,-1=R,=(1im f(2 2,) limoof(z))=(_3_47£,§41£) x~40+ if (C) f(1)=0 soP(0 1)isonthegrapho{f 1 Theslope:%92— WWW—177:;— 4.1:? 1 A ' __1_ 2; 2. — sinz In: In? : L—“S‘”. Iim 1m _ lim ——-——-‘“5‘” =I1irn cosrzl Iim sinx 1M =e. 2 y_ ( )— In: 2-»04‘ J 1‘04. In! 0+ 5””: 2—.o+ ( ) 3. sin 2: __ 25in 1 cos: “=5_‘“ 3 2n _ . 2 (a) /—~r1+5in:’d1 _ /——,— l+—_—sn—in I dz: _ /1+u du ln(1+sm z)+C (b)/ @311: =2“ / Zggg—giazsecetanade = / :2—3‘d0: / (sec9—cos)0d0 =1nlsec9+tam9| —sin9+C:ln!z+ m. ~3EIE+C (c) /23:3 sec2 z2drc : [\$2 (2msec2 r2) dz = /:t2 (can :2),dz 2 .12 (tan 2:2) — /taan1:2d\$ ' = 3:2 (tan 2:2) + in Icos I2| + C ‘ [TigjéﬁdeI = f (1_——sin2:z:) (1 +sin 1:)—% (:05sz: = f%du 2 2 mu mm —%‘(1+u)5+§- (1+u) —§(l+sinz)+ +§(1+sinr) »L 4. ﬁ'ﬂ = lim dz = lim sin—l E L =sin“! : ﬂ . l 8+21—x “.4- . 1 79~(I_1)2 Laq‘ ( 3 )l] L Run 2%? -1! _1 2 2 _ _ cosﬂsin 9+ 2+sin 0 cos 0 _. cos 9 cos I}— 2+sin 9 sin 9 The point of tangency is P(2,0)v The equation is y = 2(x _ 2) U‘ [0 Lﬁnl: A v u + ~1 as Q. Cb i N 3.1121 N A ,.‘ + S’.‘ :1 2 % Ii c059 d9=—4\/‘ 2ml§% =8' l—sin H ”H = 2. 9:0 6. ﬁ = cos 9‘ The slope— — w :5 cosO—rsin 9 § ' 5 % Area: [(1—c056))2_r16+:{8052 9=_[(1—2c059)d9+_cos[ zﬂzfgw—ﬂ 0 g 0 0 2 8. (a) (\$132+ ('1‘): @cozt—sinty +e‘(25int+cott)2= 8‘6 +1): 38‘ 27v 2w \/5 (b) Area: /y (2in )dt: if e (sint)dt t: T (I — 82 7r) by using integration by parts ...
View Full Document

{[ snackBarMessage ]}