{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

102-2007&amp;2008-3-F10-August2008

# 102-2007&amp;2008-3-F10-August2008 - KUWAIT UNIVERSITY...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: KUWAIT UNIVERSITY Department of Mathematics 3; Computer Science Math 102 Aug 2, 2008 Calculus [1 Final Exam Time: 120 minutes 10. No calculators or cell phones are permitted during the exam . Given that ﬂat) = \/\$3 — 3:2 + 3:. [4 pts} (a) Sh0w that f is one-to—one in the interval [0, 00). ('3) Find (FUTU- _ Find the derivative of y = tan—1&0 5—2:) + ln [(3x + 1) (2 +cosss)]. 4 pts] 1 . Evaluate ] ————- tint. 3 pts] coshz i 1 E aluat f 1 d 3 ts] . V e 3: . ‘ \$5 + 3: p 2 . Find lim (“3 + )3. 3 ptsl taco x i 1 0° :2: . Evaluate the improper integral / j d9: if it converges. '3 pts] 0 8 \$2 In a _ ' . . I . The curve y z — — T, 2 S I} S 4, is rotated about the :E-aJClS. Find the area of the resulting surface. i4 pts] . Find the centroid of the region bounded by the curves y : 3:3 , x + y = 2.. and x z 0. [4 PtSl Sketch the graphs of the polar equations 1” = 3 e 3 sint1 and r = l + sinﬂ , and ﬁnd the area of the region that lies inside both graphs. [6 ptsi A curve C is given by the parametric equations a: : sint + cost and y 2 sint — cost, where —1r 3 t g 77‘ [6 pts] (a) Find the points P[;r,y} on C where it has horizontal or vertical tangent lines. (b) Find the length of the curve C“ CO SOLUTIONS Calculus B Final Exam Summer 2008 1. Given that ﬁx) 2 1/ m3 7 m2 + m. [4 pts] (:1) Show that f is one—to—one in the interval [0, 00). 3m2—2m+1 (x—1/3)2+2/9> ff(ml=W=g m 0, cc>0 (b) Find (Jr—Ira). By inspection, f(1) =1 so that f’(1): 1 and (f'1)’(1}= 4 =1 4WD 2. Find the derivative of y = tan-10: 8'3} + In [(3m + 1) (2 + cos 23)] [4 pte] e’ac A we" 3”“ 1113 sing: = -1 -w 1 T 1 12 1, :1; tan (5'55 )+“(3 ‘3' )+n( “Wm“? 1+x2e—2x+3\$+1 2+cosx 1 3. Evaluate f make. [3 pics} [0032—wa=[de=/(c0thmcschm+cach2:r)dm=v(cach3:+cotha;)+c cosh :r— 1 smh .7: OR 1 2 26‘” 2e“: 72 ~————d.1:= — = — = we; : [coshx—l fex+e"°—2d\$ [823+1—2e1dx (ex—1PM: (ex—1+.3 4. Evaluate f 51 dm. Putu::c4 [3 pts] m +m 1 1 4m3 1 1111 1 1 1 1 u —d = — d d : "l fm(m4+1}‘” 4/m4{a:4+1) “r” 4fu(u+l) 4/[11 n+1] “ 4 I1u+1+c _ _ 3+2 1 ar+2 I 5- 111mm 13 ms] hay =x(ln(z+2)—ln(z—1)) = w A» limlny:lim 1/(m+2)— 1/(1— 1) 1/9: mm—2 2 limlny:lim(\$+—23)x(-x-:~ﬁ=3 —1- limy=e3 6. Evaluate the improper integral ] grab: if it converges. Integrate by parts: [3 pts] 0 3 3. lim we’zdmzlim —e’z(a:+1) : lim-t+l+1=1 t—nac 0 t—aoo 0 t—too et 99 7. 10. 2 l The curve y : It? — % , 2 g a: 5 4, is rotated about the r-axis. Find the area of the resulting surface. [4 pts] 1 1 1 1 l 2 I r 2 2 2 : _ _ 1 = _ _ 1 z _ = ( no 3’ x 4m _’ (y) + “”3 2+16m2+ +2+lﬁm2 “Heel 31/242173; 1+(yrlidm2ﬁl4(%2_¥) (\$+\$)dx=QgT/:(%+gwf_gjﬁi%)dm 2 4 82g[m4+x2—m2lna:—(1nfj]2=m . Find the centroid of the region bounded by the curves 9 = 2:3 , a: + y : 2 , and a: = 0. [4 pts] Intersection point: 3:3 = 2 - m gives a: : 1. The line y + x = 2 lies above the curve 3; = \$3 in the ﬁrst quadrant between the lines a: = Cl and x = 1. The area. of the region is 1 5 A=](2—m—xg]dr=— 9 4 and the moments are: 23 11 1 szp] §{(2—x)2—m5)dm=ﬁp, Myzp/ 33(27927x3)d:c 7 U D E? which give the centroid: My 28 Mr, 92 9‘ : p—A : e y = p— = m Sketch the graphs of the polar equations 7‘ z 3 — 3 sinﬂ and 7' t 1 + sin 9, and ﬁnd the area of the region that lies inside both graphs. [6 pts] Due to symmetry, we need one intersection point in the ﬁrst quadrant: 1 + sin 9 : 3 — 3 sinﬂ which gives sin 9 = 1/2, so that B : 7r/6. The area becomes "/51 ”/21 11 A=2 / —(l+sin6)2d6+f —(3—35in6)2d9 :.-.:—n—9~/§ .—n/22 we 2 2 A curve C is given by the parametric equations x = sint + cost and y = sint — cost, where ingtgrr. [ﬁlm] (a) Find the points POE, y] on C where it has horizontal or vertical tangent lines. dy __ dy/dt _ cost+sint _ 1 +tant _d.r _. elm/alt _ cost—sint _ 1 etant Horizontal tangent line: 1 + tent = 0 occurs at t = —7r/4 ,37r/4, that is at i"-“(01 313%?) Vertical tangent line: 1 — tent = 0 occurs at t = 1r/4 , 737174, that is at P(i\/§,U). (b) Find the length of the curve C. d9: 3 dy 2_ _ 2 _ 2_ (a) +(E) —(costis1nt) +(cost+51nt) _2 sz (3—1:)2+(%)2dt=/j mmm own m ...
View Full Document

{[ snackBarMessage ]}