240-2006&amp;2007-3-F10-August2007

# 240-2006&amp;2007-3-F10-August2007 - Kuwait University...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Kuwait University, Dept. OfMatli & Comp. Sci. Math 240: Ordinary Differential Equations Sunday, August 5, 2007 Final Examination Duration : Two Hours Answer all questions. Cell phones and Calculators are NOTallowed. Max. Marks:40 [ Each questions 5 marks ] 1. Obtain the general solution ofthe differential equation: )7 — (Bx—y + ex = 0 . . . 2 —- 2 2. Find the general solution of x (x _1)y — y — xlx -— 2)}; = 0 . 3. Find the particular solution of x v + 1 — 2x2 ' — 4x 3 4x y y y a 2 given y, 2 eJr is a solution ofthe corresponding homogenous equation. 4. Use the Laplace transform to solve the given differential equation subject to the indicated initial conditions: ty" (ti—Zy'lrl-tyltlws yl0)=0;y’(0)=1- 5. Solve the following equation for y = y (i), using convolution theorem for the Laplace transform, 1 MI) =l 0-“) W) du y(0)=0:y'l0)=l‘ 0 6. Find the power series solution ofthe differential equation valid near origin and calculate theﬁrst Five nonzero terms: (x2 +4)y"+xy'~9y= 0. 7. Evaluate (a) L" (s e“): i b L "y in cost— d (s+1)sz+25+2 (J [Jye s y ( y) y] 3, 05t<7t/2 in terms of the 0: function and ﬁnd L[F 0)]. 005 t , t 2 iT/Z 8. (i) Express F(t)=|: (ii) Showthat L [if F(u)du] dy [email protected] 2 0 n 3 Good Luck OO 99 DIIFFE-RENTIAL EQUATIONS (MATH 240) INVERSE OPERATOR FORMULA 1 a WRWJFWJ EXPONENTIAL SHIFT iJwvaEHD—mwm ____J LAPLACE TRANSFORM FORMULA 1- LVN} = fiS) 2. L{F’(t)} = 5m) _ F(0) 3. L{F”(t]} = 5mg) m 5H0) H No) k:n——l kzo a“? (S) = L{(-t}”F(f-)} LUWWH=ﬁﬂﬂi zsmhwmm _i INVERSE LAPLACE TRANSFORM L4Um—m}=me |_. 4 G" I'— Jml r2 li”{e‘“f[s)} = 04(t —- C)F(t — C) 3 '7 5 6 - L4wam}=fﬁmGU—mw L— n 13. L‘1{52—:-k—2} : cosh(kt) Ly.menhdfﬂmw OO 99 i""\<7t-% - 324/29 FE CCCCCC-C Cm C i} .C. (£7 " .797) ”K 4- y a CC: C: __ «w ; C1 C21- 5 C C) C 4‘ . 9,1,; . _ 2" “LC - e “ (’JL 1 §%:T;' L" (”)4 "i C t (k I {"3" (9'37” 1 . h 5"“ I ,3 MC C— N) ., Cl ‘ ~~~~ 52-» "XZ'C 2L 4“ )y - VVVVV ’— "2C Cry—2)) 3-3 0 Lu C , r , C #3 J a}? my} ﬂ " V1 ’8:th 3- )‘I’j J1 , 1/ ~ “'1"; H (.1 : CW u -—4—7:w— { P157“ 1 = FL , , . “._.r ‘7 KFL‘ ' \ C i ! 'JCL C z- . M f ‘76” 4' . - ’3’ JCL'" "v 7M; -4 1-K L E _,L 2_7v(‘ “+47'57ELE '_ i “A 1 - . C 4)?“- . .l K 2" .55 "3 4‘4 C C_., 3:?" ’v" 6." .-4. {“790 ﬁ .4 pm 4-1 V. _ 4 1/ <2 C ._. CC my 6; T f—HL "C/ J 1 ‘7L C3“ 4: V‘ C 2197(4 €26 )~._ * 4% L742“ ‘ . I: L—- i (30.3 ‘ r‘ T ,_ '3. C J /k Kgﬁ—C-WCU‘“) 4“? «4 690""; .+ LU ( Zr)LWF%‘> 'i‘. 4“ Q7 7“”— tj ‘F’ (ng ‘1J 7< t— 7/8 410% - ':.. '22: (2fo ” C, , ,C. - Y w," , ._. C. 4;; 'Eﬁg A, 2.x (. .h) \r ﬂ .0 CO ' .«ﬁ'L, ‘H f C \_ h , . G; L MW)? '+ M; --7 / ‘ Em-rgi24 “:9 L\ /‘\ y I L L1 b1 1’ h "' {1‘ _\- (.19 L") Lia-J ‘L‘\ . 1.3, . “nu -. . a- a: 7 w ("115-‘1wé’I-3 ”2&th {VFW-"191%. ‘1‘ E}, W QM?! /[4_._ “LOC- L’ ’ :“w. v”: J "" U {“1 , V. 4 Um) 014-») mm, — -- in: ”4. ~‘U C1 am“ M Mr?) cwwemm L" W5 ) C #1 Ar 1) "j ': (a T (.31! 21 % a egg «AL—r {3110‘ + ’5% #4th . ,2 MFA} (L ( e \$1713. L- ‘r‘ . ' ’X?’ “T we )40,C7(+.:S J (2:!- CO , 3 (99:2ij 7 E (Sri-i)(<j§T—}1,_S—+L)] w A. ‘E t 1 L \ [e (ii—TH 5+7531>J ,2 git—”x (lg-~13 » :2 «>< U41) 97 {29W (9 3.3 (93 L. L @ yeﬁ )9») Ceﬁh‘ '/ 30%] LE aim-9 9<"tg‘3\9j 1.9“» (WSW) it)” (9—9331 33 W PM 3‘: . .3, G '9- t 4. WA— 93/07 a 2 “t Z ”LT/L F U D: "3 “3” 4,65%- 04 (T """ I] 3/1”“ (5 :3 r a3 3 ~ kmu~¥f3ﬂ<u £3 gut-v T3 . f 3115‘ V, (f; L LPG/LU '3 g_ g» 7.34:"? .. BEL: (b3 51‘ ‘ ~-- “ 9f (5) L" [ r 0- L 30 {_. (“0%)“th "(3: , "/"ﬁ . ‘ - L L 3 3c» [0 {(Mrcwj LE». - #7 _ LR) i if! i {KW §\—: 00 ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern