111-2007&amp;2008-2-M10-March2008_2

# 111-2007&amp;2008-2-M10-March2008_2 - Kuwait University...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Kuwait University MATH 111 Mar 31, 2008 Math. Dept. First Midterm Test Duration 90 minutes Calculators and all mobile phones are not allowed during the exam. L [2pts.] LetAbeaZXEmstrixsndﬁz _? [fAB= i]! ﬁnd A. 2. [2 pts.] Prove that if A and B are both 11 3< n skew—mnmletric matrices. then AB + 3.4 is synunetric. 132 3—13 &[3pm[I£L4= 4 0 1 ,amiB_1= 1 1 —2 . 7 —1 5 —2 —2 —2 0 Find a. 3 K 3 matrix C. such that 31-1—10 = [3. 4. [3+2 pts.[ :1. Show that if A is non—singular, then 3E 0. h. Prove or disprove: If .4 and B are non—singular n )< 1*: matrices, then A + B is non—singular. 5. [3 pts.] Let = 4 and [3—1[ = —2 where A. and B are both 3 x 3 matrices. Find |— season. 6. [5 pts.] Let AX = B be a. linear system such that 2 —1 3 I 2 A: U 1 —2 .X= y .andB= U . —1 —1 1 2: 1 [3.) Find A—l, (b) Use part (a) to solve AX = B. 7. [5 13115.] Find all values of a for which the following system has: (i) no solution, (ii) unique solution. [iii) inﬁnitely many solutions. III —— 2y — z = 2 23 + 5y + :5 = 5 I —— y -|— [o2 — 5}: = o 1 O. 09 Key Solutions First :M'ld-Term in LINEAR ALGEBRA (Ninth, 111} - 0 LLetA: I 5' .ThemAB: 1 y 1 “ = " w 2 —l. 3 u: 2. 2+2y QI—y _ 1 2 . ._ _ n_o [3+2w 23—36] — [2 4J.".[fhet'ta-fole,:IL —1:y—Ulv—-1and ._ . _ 1E} _. _1__L —l —2 w—U,1.e.A— 0 O:|.OI,SIIICEEIB — 5[_2 1],“ejust compute A = [.ABjB—L. 2. Since A and B are both :‘kew—:';\-'1'ri_met.rit:E AT 2 —A and ET 2 —B. Therefore: [_AB+BA}T = [ABIIT+ [521)?" = {BT){AT)+ LATHE?) = [—B)[_—A)+ [_—A][_—B) = BA + AB = AB + BA. 2 —2 —2 32 321-10 = I3 if and onlyiff." = 213-11 Thus, C = AB-1 = [ 10 —e. 12 J . 6 10 —13 4. a. If A is non—singulaL then 24—1" exists and 14—114 2 1'. Thus |A_]'| |A| = 1, which means that |A| can not be zero. 13. False: let A be any 21 X n nomingiular matrix. Then 3 = —A is also nonsingular. However, A +B = I] is not. Example: 11 = 2. A = I2. 5, |— 3A2[B2;IT| = [—3)3 |A2| “32m = —27 |A| |A| |B||B| = 42-4-4- —1 —1' T-—i—=—me. 67 For [_a]|, we have 243E100 100E121 [AII3:= o 1—25010 “WW 0105—2 —5 —4 —1—11E001 0015—1—3—2 [I3lA—l:: 3 and for [bl], we have X = A—lB. Thus: X = [ —8 ] . —-—i 1 2 —1 E 2 1 2 —1 E 2 7—[AIB]~ 2 5 1' 5 mm“ 0 1 35 1 11522—5521 OOaQ—IEa—l Therefore! we have no solution if a. = —1, unique solution if a. E RIDE—1! I}! and inﬁnitely many solutions if a. = 1. l0 0. 09 ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

111-2007&amp;2008-2-M10-March2008_2 - Kuwait University...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online