{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

111-2007&amp;2008-3-F10-August2008

# 111-2007&amp;2008-3-F10-August2008 - Kuwait University...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Kuwait University Math 111 August. 04, 2008 Math. Sc Comp. Sci. Dept. Final Exam Time: 2 hours Calculators and Mobile Phones are NOT allowed. 1. (2+2 pts.) (a) Prove that if (Al % 0, then .4” exists. (b) Let A be an n x 71 matrix such that A3 - 3.42 = In. Show that A is nonesingular‘ 2. (2+2 pts.) (a) Let A be a 3 X 3 non-singular matrix with (1de : 7A. Show that there is no matrix B such that B2 : A. (b) Show that if X and Y are linearly dependent vectors in R3, then X x Y : D. 3. (2+2 pts.) (a) Prove that if P‘IAP and P’IBP are both diagonal matrices, then AB : BA. (b) Show that if A is diagonalizable, then A"1 is diagonalizable. 4. (3+1 pts.) Let S = {(1,2,3),(0,1,2),(+1,0,1)} be a set of vectors in R3 and X : (1, -—2, 2) be a vector in R3. (a) If possible, write X as a. linear combination of vectors in S. (b) Does S span R3? Explain. 5:.13igrPl‘fh) ___ f (a) Let X = (1,2, +2) and Y : (+2, 1, 3) be vectors in R3. Find parametric equar tions of the line passing through the point P(4, 1, 2) and orthogonal to the vectors X and Y. (b) Find the vector of length 7 in the direction of Z = (2, —2, 1) E R3. 6. (4+2 pts.) (a) Find a basis for R‘1 that includes the vectors X1:(1,0,—1,0) and X2 = (0,1,1,0). (b) Show that W : {(a, b, c) l 2a ~— b :1, o,b,c E R} is not a subspace of R3. 1 —1 Cl 2 1 —1 1 5 . 7. (6 pts.) Let A = 0 0 1 3 . Find 2 —2 l 7 (a) A basis for the row space of A. (h) A basis for the column space of A that contains only columns of A. (c) A basis for the null space of A. (d) The rank and the nullity of A. 1 U 0 1 0 0 B. (6 pts.) Let A z -—1 1 l and D = 0 2 0 . Show that A and D are +1 +2 4 U 0 3 similar by ﬁnding a non—singular matrix P such that P‘lAP 2 D. Len Roo\30‘=Kco\3Q\Q— \Q\Ir\ z) mkmoomﬁ= Qﬁmamm In :1) (Azs mnsiﬁuﬂmr mod (\f' - _}§. Gd.) (A. by \cx-;e\1\=n:n\ =>m1mA ‘51\:\ => \<—\\¢0- 2. m. \o-d'JCM : \-c:\\ —_~_-> \(‘A\1+\C>x\:o =7 \N:-x, \B\1=—\ m 193 Kat-"C z) Lax?» xfﬁ : (_ LYX‘TW : CO : CZ) . 5. an magma} wax—«(es cmmxe) Lé‘cxmté‘i-ssﬂ :Lé‘aﬂcé‘ﬁﬂ => (Mi: - ‘QGA. m P hi): D Oasdaaﬁmﬁ :) K? (A?\- - 3:;PE‘PmF‘ <3" hamach =3 (\— {s omwbomjz wk. LL- d. H.131 = QQ\,’1,‘3'\ +01 £0,323 +c3 (4,0,3 \ O '\:\ \ o --l; i' :7[?_ \ 0J2 N [o \ LE—Lp, _—_>c~.m Sa\-)h‘m- 3D 7- ‘ 3 C) 0 c: j- X Gan w‘c be qkimear Codeinoskﬁm *5 \eguedsm uh S. 51 S' does “9‘; spam 1?}, X ﬁé span S) KER}. ‘ﬂ: \+ £3 3 '1 ‘5 121+5t b3 3-.- = 1 1 - —_ LL: “LL: 1 “in 3Q ’ 2}“ K3 J 3 3 '3) 0.1110“; Wﬂm “03 U20 0 o\ {0"}0 o\ Kc: o M\o\ Laws 0 ,I)‘ SpaniaRL-r nSSDM‘t C.{_\ o, -\‘01+C1_Qo,\,\ ,o} .x-C1Cbo a a) +CuLo,\,od) +C5Lo, aha} +QeL<-,0,G ,ﬂ :(C,C;(';o) ~—.—_-_ Dc¢is v» (0.9;03 ci. W” 23 Wu m a may [65. l __\ O '2. ® --\ O .1. 4 [ \ _ \ \ 5 N O ‘3 ® 3 8' FM’M: (9r!) [Ck-HUF-HM o c: x 3 c2 0 0 o 7. -’L \ 1 D o o o -— k/A-\\k9\"-.sn+61 -. mum—n (7V3 '5‘. {byword , Kc): ,Ml ‘1' 9\=\ C" {L\)\)0,G\) k_1101'3)‘\1\ OA\ RRAUCQ21 ¢\$ (\u\(\¥'b(_—\:'2.. ...
View Full Document

{[ snackBarMessage ]}