111-2008&amp;2009-1-F10-January2009

111-2008&amp;2009-1-F10-January2009 - Kuwait University...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Kuwait University Math 111 January 25, 2009 Math. & Comp. Sci. Dept. Final Exam Time: 2 hours Calculators and Mobile Phones are NOT allowed. 1. (2+3 pts.) (1 1 2 eel (b) Show that if X and Y are orthogonal unit vectors in R", then — Y” = (a) Find all values of a E R such that A = [ :| is row equivalent to 12. 2. (2+3 pts.) (a) If X = 1' + j — k and Y = 21' — k, determine sin 0, where 6 is the angle between X x Y and 2Y. (b) Determine the value of a E R such that the line x—ga = Ely—2 = z_—_41 is parallel to theplane z+2y—z+4=0. 3. (2+3 pts.) (a) Determine Whether V = {(m,y) E R2 : y > 2:72} with the operations (cc, 3;) 69 (0631/) = (I + w', y + y') and 6 906,11): (01, Cy) is a vector space. (b) Show that W = {(x, y, z) : 2x+4y +22 = 0 and 13+ 2y — 52 = 0} is a subspace of R3. 4. (2+3 pts.) (3.) Show that every ﬁnite set of vectors in R" containing the zero vector is linearly depen- dent set. (b) Show that A and AT have the same eigenvalues. 1 2 *3 1 l. 2 4 ~6 3 2 . 5. (3+1+1 pts.) Let A— _3 _6 9 ‘3 ‘2 . Find —1 —2 3 0 0 (a) A basis for the null space of A. (b) A basis for the column space of A that contains only columns of A. (c) The rank and the nullity of A. 1 2 0 6. (4+3 pts.) Let A: 2 1 0 0 0 —2 (a) Find a nonsingular matrix P such that P‘lAP is a diagonal matrix. (b) Use the diagonalization P‘lAP of the matrix A to compute A‘l, 7. (4x2 pts.) State with justiﬁcation whether the following statements are true or false: (3.) If A is a nonsingular matrix such that A2 : AT, then |A| = 1. (b) Any set of two vectors can be used to span a two dimensional subspace of R3. ((3) If {(1, 0, 2), (0, 1, ~3)} is a basis for the subspace W of R3, then W is consisting of vectors of the form (a, b, 2a — 3b). (d) If A is an n x 71 matrix such that [AI = 0, then some row of A is a linear combination of others. m\ 9 O FEM Em.“ Newark“ 95/w/aooq \. on \Q\ qto -.;1> d‘_.c\-1_—‘to :) Q6}?\7L—\,Ik. m \x -\c\\"=(><_\c3.cx-~n = \\X\\1.\—\\\T\\1 = 2 :3) \\x—~c\\—_ E21. 2.. G} X”? A. 2““ =7 Isms! : \. ‘3‘ <°)3;-"‘7'\- <\)3‘;"‘ g—L‘? Q:“°‘ '3. m \rcs m‘c quac‘nv smote, Cu,“ (-Lv‘ bu)? -\0c\,3\c,év-. b3 \N—s Va; 5°\'~«X\OO\$QQCC 98 vac 89W%WS 935% lac-w“; 4,1,1 :0 , 1+1$~§E=o =7 Subsch “n 5“ EXQ@\<\1‘9ec.6.3 ‘03 ‘17. ,gcc,9\ 1 2 ~13 o o o O O G) c: 5' ' ~ 0 o o o G) c) C.) O O C) oq {L—1,\,o,o,o), \3,o,\,a,o)‘\ woman's %v\-Qe nuﬁquce. \o\ {L\,2,J,, \\, K\,3,—1,01,Q\‘z. 1’01H c1 Raw 0. = 2 of: “mun—3 C—\ :1 ((\-\ -7_ Q E. PQWW: \')\11_Q\ : -7_ ’7‘_\:J : QQ+1)K’A+\\er\-33. o“ Q o A _‘ v‘h‘ho —'2.~7.o'o \to:o “ F:\o?‘ ’>\-:-\ [-1 —'L°,o ~[oo lzoj :>x_‘—_ l '1. 01c 2; o tic, o o o {o 0 -lo \ —3 —?_O§o ‘00, o :37: \°\ rr\:.’)_.-.[—2_. —'5 eso]~[o \o':]::>'7<-’L:[O] 0‘0 0 0 01° ,0 o olu ‘ . do 0 “’2- 0. \—\ ego ' 0-:[oazo f>\:3;['110']~[00\:0] :7K3:‘J 003 0 0 5| C) o oio 0 d 413 113 o m 9‘P~?=m =3 é‘ﬁ‘? =6’ = a“: {’6‘? - ["3 4-3 o- 0 O -”-L 1.. on \PQL\:\PF\ = \P‘\1..\<A\ :0 :3 \G\-::\ L\G\1:o) :‘Tr’ue b\ Gunw E/Kaw-Q\C '. V‘R\-R c1 {\‘ca‘1..\ «MA Keg, -31 our. :MWa—L) Lu,b,zo~-3\oﬁ:c‘ (“0,14 \D;Q o I:b + C1. C0, \,-'5\ z) [ 7. Jinan—ab ['°’ ~O\l 00. q b O J :3 5“)“: "(T‘ue on um“; 2) saw; e3 (A we. umgcngwxe/J z) Same. who is a Limr CWTMm-Y\ cg o\€tus ; \ZUQ 6WW\ ...
View Full Document

This note was uploaded on 02/23/2010 for the course LINEAR 0410111 taught by Professor Linear during the Spring '10 term at Kuwait University.

Page1 / 2

111-2008&amp;2009-1-F10-January2009 - Kuwait University...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online