{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

MAT 1322M1 2003

# MAT 1322M1 2003 - MAT 1322 MIDTERM 1 VERSION A 1[2 points...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAT 1322 MIDTERM 1, VERSION A 1. [2 points, 5.10 #19] Determine if the integral R ∞ 2 1 x (ln x ) 2 dx is convergent or divergent and evaluate if it is convergent. A.1 B.2 . 51 C.0 . 50 D.5 . 33 E.1 . 44 F.divergent Solution . R ∞ 2 1 x (ln x ) 2 dx = R ∞ ln 2 1 u 2 du [ u = ln x ] =- 1 u ∞ ln 2 = 0 + 1 ln 2 . = 1 . 44 2. [2 points, 6.1 #11] Find the area of the region enclosed by the curves y 2 = 2 x and 2 x- 2 y = 3. A.5 . 33 B.4.77 C.3 . 55 D.6 E.9 . 01 F.2 . 22 Solution . Intersection y 2 = 2 x and 2 x- 2 y = 3 ⇒ y 2- 2 y- 3 = 0 ⇒ ( y- 3)( y + 1) = 0 ⇒ y =- 1 , 3. A = R 3- 1 [( 1 2 (2 y + 3)- 1 2 y 2 ] dy = 1 2 R 3- 1 (2 y + 3- y 2 ) dy = 1 2 y 2 + 3 y- 1 3 y 3 3- 1 = 1 2 32 3 = 5 . 33 3. [2 points, 6.2 #13] The region enclosed by the curves y = 3 √ x, x = 1 , y = 0 is rotated about the line x = 2. Find the volume of the resulting solid. A.11 . 44 B.7.17 C.5 . 10 D.12.57 E.10 . 11 F.6 . 73 Solution . y = 3 √ x ⇒ x = y 3 A = R 1 π [( y 3- 2) 2- 1 2 ] dy = 15 7 π . = 6 . 73 4. [2 points, 6.2 #31] The base of a solid is the region { ( x, y ) | x 2 ≤ y ≤ 2 } . Cross-sections perpendicular to the y-axis are semicircles. Find the volume of the solid....
View Full Document

{[ snackBarMessage ]}

### Page1 / 4

MAT 1322M1 2003 - MAT 1322 MIDTERM 1 VERSION A 1[2 points...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online