{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 3_10 - PHY 5346 HW Set 6 Solutions – Kimel 2 3.10 This...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: PHY 5346 HW Set 6 Solutions – Kimel 2. 3.10 This problem is described by a) From the class notes  , z ,   n A n sin   B n cos  I  n L sin nz L where 1 A n  2 L I  nb L 1 B n  2 L I  nb L Þ0 Þ0 L L 2 V , z sin na sin  ddz, L V , z sin na cos  ddz, L 2 0  0 0 Þ0 Þ0 2 1 B n  1  L I  n b L Noting Þ0 Þ0 L V , z sin na ddz, L Þ Þ  2  2  2  2 sin d 3 2  2 Þ 3 2  2 sin d 0 we conclude A n  0. Similarly, noting cos d Þ cos d  4 1m , 2m  1 m  0, 1, 2, . . . . where I’ve recognized that  must be odd, ie,   2m  1. Also L 2  Þ 0 sin nL z dz  2l  1  , l  0, 1, 2, . . . . . where again I’ve recognized that n must be odd, ie, n  2l  1. Thus 16 1 m V B n  2 nb  I 2m1 L 2l  1 2m  1 b) Now z  L/2, L  b, L  . Then from the class notes I 2m1 Also 2l  1  L sin  1 2m  2   b 2l  1  2L 1 l m1 2l  1  L so  , z ,   l ,m 16 1 lm V  2l  1 2m  1 2 Ý 2m1 cos 2m  1  Using tan 1x  l0 1 x 2l1 1l  1 Ý 1 l   tan 4 so   , z ,   4V  m 1 l0 1l 2l  1 cos 2m  1  1m 2m  1  b 2m1 Remembering from problem 2.13 that 1m 2m  1  b 2m1 m cos 2m  1   1 tan 2 1 2  b cos  2 b2 1 we find  , z,   2V tan  which is the answer for problem 2.13. 1 2  b cos  2 b2 1 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online