Second_Order_Nonhomogeneous

Second_Order_Nonhomogeneous - 2 y 00 + xy-1 4 y = 3 x + 3 x...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
MAT 2384-Practice Problems on Nonhomogeneous second order ODEs-Methods of Undermined Coefficients and the Variation of Parameters For each of the following ODEs, Find the General Solution. If an initial condition is given, find also the corresponding particular solution. 1. y 00 + 3 y 0 + 2 y = 30 e 2 x 2. y 00 + y = csc( x ) 3. y 00 - 16 y = 19 . 2 e 4 x + 60 e x 4. x 2 y 00 - 2 xy 0 + 2 y = x 3 cos( x ) 5. y 00 + 4 y = 16cos(2 x ) , y (0) = 0 , y 0 (0) = 0 6. y 00 + y 0 - 6 y = 6 x 3 - 3 x 2 + 12 x 7. y 00 - 4 y 0 + 4 y = 12 e 2 x x 4 8. y 00 + y = tan( x ) 9. x 2 y 00 - xy 0 + y = x ln( | x | ) 10. y 00 + 6 y 0 + 73 y = 80 e x cos(4 x ) 11. y 00 - y 0 - 12 y = 144 x 3 + 12 . 5 , y (0) = 5 , y 0 (0) = - 0 . 5 12. y 00 + y = cos( x ) + sec( x ) 13. x
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 y 00 + xy-1 4 y = 3 x + 3 x 14. y 00-. 16 y = 32cosh(0 . 4 x ) 15. y 00-2 y + y = x 2 + x-2 e x 16. y 00 + 1 . 44 y = 24cos(1 . 2 x ) 17. y 00 + 9 y = 18 x + 36 sin(3 x ) 18. y 00 + 4 y + 5 y = 25 x 2 + 13 sin(2 x ) 19. x 2 y 00-2 xy + 2 y = x 3 sin( x ) 20. y 00 + 2 y + y = 2 x sin( x ) 21. y 00 + 2 y + 10 y = 17sin( x )-37 sin(3 x ) , y (0) = 6 . 6 , y (0) =-2 . 2 1...
View Full Document

This note was uploaded on 02/24/2010 for the course SITE MAT2384 taught by Professor Josephkhoury during the Fall '09 term at University of Ottawa.

Ask a homework question - tutors are online