Seperable-Homogeneous

Seperable-Homogeneous - dy dx =-2 xy, y (0) = 2 (b) L dw dt...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
MAT 2384-Practice Problems on First-order Separable- Homogeneous ODE’s 1. Find the general solution of each of the following ODE’s. (a) y 0 = 2 sec(2 y ) (b) yy 0 + 25 x = 0 (c) y 0 sin( πx ) = y cos( πx ) (d) y 0 e - 2 x = y 2 + 1 (e) ( x 3 + y 3 ) dx - 3 xy 2 dy = 0 (f) - ( x 2 + 3 y 2 ) dx + 2 xydy = 0 2. Find the particular solution of each of the following Initial Value Problems. (a)
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: dy dx =-2 xy, y (0) = 2 (b) L dw dt + Rw = 0 , w (0) = w ( L,R,w are constants) (c) y = 2( x + 2) y 3 e-2 x , y (0) = 1 5 (d) y x ln( x ) = y, y (3) = ln(81). (e) yy e y 2 = ( x-1) , y (0) = 1 (f) (2 x + 3 y ) dx + ( y-x ) dy = 0 , y (1) = 0. 1...
View Full Document

Ask a homework question - tutors are online