This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: MA 265 LECTURE NOTES: WEDNESDAY, JANUARY 23 Special Types of Matrices Linear Systems and Inverses. We return to the question of solving a system of linear systems: a 11 x 1 + a 12 x 2 + ··· + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ··· + a 2 n x n = b 2 . . . . . . . . . . . . a m 1 x 1 + a m 2 x 2 + ··· + a mn x n = b m Recall that we can express this system as a product of matrices: A = a 11 a 12 ... a 1 n a 21 a 22 ... a 2 n . . . . . . . . . . . . a m 1 a m 2 ... a mn , x = x 1 x 2 . . . x n and b = b 1 b 2 . . . b n = ⇒ A x = b . For simplicity, assume that m = n . We will show that if A is a nonsingular matrix, then the system has a unique solution. Recall that we say that A is nonsingular (or invertible ) if there exists an n × n matrix A 1 such that AA 1 = A 1 A = I n is the n × n identity matrix. First we show that the system has at least one solution x 1 . Indeed, denote x 1 = A 1 b . Then we have A x 1 = A ( A 1 b ) = ( AA 1 ) b = I n b = b so that x 1 is a solution. Now we show that the system hasis a solution....
View
Full
Document
This note was uploaded on 02/25/2010 for the course MA 00265 taught by Professor ... during the Spring '10 term at Purdue University Calumet.
 Spring '10
 ...

Click to edit the document details