exam%203%20pink

exam%203%20pink - P \ 9 K6 K pt xam3 m (Spring 2007) Name...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: P \ 9 K6 K pt xam3 m (Spring 2007) Name Circle the correct wer. Each problem is worth 4 points. 0 1. Determine if Ixe’xzdx converges or diverges. If it converges, evaluate it. GD —0.5 952318.141th ‘ gem Z —ao o ,6: ? —;/_ w]. w 2W ) a? b. 0.5 kg) (11 0L—"°" a q .00 c. 1 d. diverges 4 1 2. Determine if I—zdx converges or diverges. If it converges, evaluate it. x ° 1% MW :flém fli‘éfi» aao a”“ I ../ x/ :00 '1 CL 3. We can use Newton’s method to approximate Vg . If the first approximation is 2, find the second approximation. ’C ()0 J (M 3/5 /100 %;g 07%] I ’55.,- . 2% ' -£EQD; —-’¥%V /9 1.75 poo/13x"? 1323* 45(9) 0? 3'9 0’) c.28 /E§ d.Lm fi?’%:;/76 e. 1.71 4. Determine which of the following s uences converge. a. a,l = 2n+3 («QM/33:00 fill”) y\ 4 n )— ; U ’ b. a =n2~5 “1,75 0 U, > W400 3 U . c a _3n+2 , QEQIJ.§IL4,) ' " M—l mg? 5”' (1. none of the above at least two ofa, b, and c m +- / 5. Determine the sum ofthe geometric series 9 + 3 + 3 +6 +5 + @6935 “is 150 MON 077 d’ is tha grq/ 3¢353 6. 063110 veasum g \ 0L6 wriHéna/i Exam 3, page 1 of6 6. Determine which of the following series converge. a. §(2n+3) ON) Mk +ejm alesrt n=l ) °° ‘On;/ b_ zanzn—S L 0/1, WI 7L 9 c. ii“? ow. MW» “5* n=1 n— none of the above e. at least two of a, b, and c 7. Determine which of the following series converge. 3. i8)" W. 3wSQ“'Q5 7 1.2:“: DJMWWw n=l n+ A c. i 3" DMLAT WM» 1mm ":1 n2 + 4 d. a, b, and c diverge e. at least 2 of a, b, and c converge 8. Determine which of the following series converge. :71: 3- 32(3)" W. WSWS W” F’ N] g av, mam) £659 0 9w Wee «eese d. a, b, and c diverge e. at least 2 of a, b, and c converge Show all work for fi.111 credit for the following problems. Each problem is worth 5 points unless labeled otherwise. oo 9. Determine if the integral converges or diverges and find the value if it converges: I 2 tom 35053”, : fitmwwygli .9 8* baa” 200 / 2 ’- \o (uzefifgydujeXCQ‘5 :gm @igyE 02/6 4,5 00 60M . < (v / V SC 62300 MEI»; Gave/€385 Exam 3, page 2 of6 5 10. Determine if the integral converges or diverges and find the value if it converges: I L. 3 , 5 w z , 5, 332% e flat Meal/7; am m w 03 (14 14 4/ a (2413* 'f :% 3[/5»3;/: (afi/r : 'zOE‘I/y: j; ’02 4/5: via; 5 _‘ )5— Kok b 54?),9‘L6fé ,5 3/14/55” .72 4’“ q ( Wuwaaéy ll. Determine if the integral converges or diverges and find the value if it converges: I sm xdx 0 1+cosx' b . [m »S : 24a mam/J} w \ (ah/WW” barr‘, (7 5 - u: / 1" afisx ‘ d“ r ’ 5&0 X05? :00 3/“ Oz; oer es 0 / kw? ‘4 3 12. Use the sequence 2, i, E, E, E, to complete the following. (3 points) 4 5 6 7 8 0% a. Determine a formula for the n’” term in the sequence. an 2 IL+ ’3> 12. X i PUB. < L/ 1 ’3) b. Determine the next three terms in the sequence. ‘7 ' ’0 / / g 5 ll _———fi—) c. Determine if the sequence converges or diverges. If it converges, what does it converge to? cup : n+8 [q 490 quc AV {—09 13. List the first three terms for the following sequences. (4 points) a. an: "2+2 b. a1=4 an+1=2an—3 n _5 - 3 ,23 a :17; a) I: ’ :5 '9 02/:g(L/)/3:S '2:%: {if-r a3 215%? 7 as 31:25:“? Exam 3, page 3 of 6 4950/) l4. Determine if the following sequences converge or diverge. If a sequence converges, determine what it converges to. (6 points) a a =(_1)n4n+3 b. an=(_1)n2:z —5 a an=7n—3 2n—7 n +3n 3n+5 9 , 7/14 3 — ' 3:3 :0 fig” 715/3. = 2 it”: 371:7”? 'n-w n” W 3M5" 3 7 W my 0 W a 3 16. Use Newton’s Method to approximate the solution to x3 + x —3 = 0 to three decimal places. Use 1 as the first approximation. £60: 143+ 7“? 44”, = 14,: “*0 rm: 3562+! “an 1A”! -.-an: ‘5 £3// fl’Ll) ’42,) _ .26) e ” 713: [096/ My: _ . . w J.“ ,/ aéqé AJ/fit/ “WHO/2M) /’9 $0.213 ; lé’LQlB"fzgf$ Aéug my £070” Exam 3, page 4 of 6 17. Pick a method (Bisection or Newton’s) and tell how you know when to “stop” that method, or when you have found the desired solution to the problem Be sure to list which method you have chosen. Bisemtlé’h' sfif UJi’Lgrx £0m050 or when atA M ion rouM/O +72 wHte Sam 2 number (WINK Sféawaieaa it 0L Flu-65)) m“ '15 mm Hie 6&st zero Ajwéwq's I $~€ovv “Len 49”? 75,. when fOLmjéeQ-AD Me; greaepiéea gfi 04F PMs 18. Determine if i 1 2 —i2 converges. If so, find the sum. k=4 (k — 1) k .L._ —,I l I 4’" "I>+ "“IL’L'AJ’ ' Jr ("—01, fit) S“;ZJ3—\z‘;~:>+<<srlr 5” W ‘4 , J- ’ r’ Sn / 31 “Z. - = 4.,4 , J— “as” “as” series w 19. Use the integral test to determine if i do k=1(fi+1 W M .3 (3331M 5 Jo . '9 , ’ :i. , f/lf, ’j— : ff”: 184(X+)>0& /.é/’Vl~ 34H] :MEH M) 0-2 4 2 converges or diverges. Show all work for credit. Exam 3, page 5 of6 4 . . . , , 00 +3 20. Use the 11m1t comparlson test to determme 1f 2 2’17 :2 n=l n — n 4/) ; 07,07,517; En; fig (rsemes) ’97.?) converges or diverges. Show all work for credit. near "a"; 1' , " @0) Elan arZL/x 5/” jg Ada: ‘éfié’ 0" 1/ 22m 157/”: g V )9 %2 447/ .77/2 6” 07 . /,, 21. Use the ratio test to determine if converges or diverges. Show all work for credit. 02" n=l n. A+l [in I? j "t' (n+0! A4“! 0 n! I I L) flaw/fin? 7 )/ #53?“ n2” (>0 0Q” i W M 9 2 WM 37 {til 22. Approximate the error when only the first 4 terms are used to evaluate 40 n=ln mm , 625+ a. m. + ~° 335.22 , .L _ a -6 L _ . ’5 ,5 , S M lijfiig’z’? loaoo 9L 5’7” b” - 4,5. A71 Exam 3, page 6 of 6 ...
View Full Document

This note was uploaded on 02/25/2010 for the course MATH 201 taught by Professor Kim during the Spring '07 term at SIU Carbondale.

Page1 / 6

exam%203%20pink - P \ 9 K6 K pt xam3 m (Spring 2007) Name...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online