Discussion5

# Discussion5 - Discussion 5 Emily Mower Contents 1...

This preview shows pages 1–4. Sign up to view the full content.

Discussion 5 Emily Mower February 19, 2010 Contents 1 Conditional Probability Distribution 2 1.1 Schaum’s 3.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Schaum’s 3.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Schaum’s 3.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Combinations 8 2.1 Textbook: 2.34 . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Textbook: 2.119 . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Permutations 11 3.1 Textbook: 2.48 . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Textbook: 2.136 . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Conditional Probability and Bayes Law 13 4.1 Textbook: 2.89 . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Textbook: 2.128 . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3 Textbook: 2.135 . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
1 Conditional Probability Distribution 1.1 Schaum’s 3.18 The joint pdf of a bivariate r.v. (X,Y) is given by f XY ( x,y ) = ( kxy, 0 < x < 1 , 0 < y < 1 0 , otherwise where k is a constant (a). Find the value of k . (b). Are X and Y independent? (c). Find P ( X + Y < 1) (d). Find f ( x | y ) Solutions: (a). Find the value of k . Z -∞ Z -∞ f ( x,y ) d x d y = 1 = Z 1 0 Z 1 0 kxy d x d y = 1 2 k Z 1 0 yx 2 ± ± ± ± 1 0 d y = 1 2 k Z 1 0 y d y = k 4 k = 4 2
X and Y independent? f ( x ) = Z -∞ f ( x,y ) d y = Z 1 0 4 xy d y = 2 xy 2 ± ± ± ± 1 0 = 2 x f ( y ) = Z -∞ f ( x,y ) d x = Z 1 0 4 xy d x = 2 x 2 y ± ± ± ± 1 0 = 2 y Since f ( x,y ) = f ( x ) f ( y ) X and Y are independent (c). Find P ( X + Y < 1) P ( X + Y < 1) = Z 1 0 Z 1 - x 0 f ( x,y ) d y d x = 1 2 Z 1 0 4 xy 2 ± ± ± ± 1 - x 0 d x = 1 2 Z 1 0 4 x (1 - x ) 2 d x = 1 2 Z 1 0 4 x [1 - 2 x + x 2 ] d x = 1 2 Z 1 0 [4 x - 8 x 2 + 4 x 3 ]d x = 1 2 [2 x 2 - 8 3 x 3 + x 4 ] ± ± ± ± 1 0 P ( X + Y < 1) = 1 6 (d). Find f ( x | y ) Intuition: Since X and Y are statistically independent, f ( x | y ) = f ( x ). f

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 02/26/2010 for the course EE ? taught by Professor Mendel during the Spring '10 term at USC.

### Page1 / 15

Discussion5 - Discussion 5 Emily Mower Contents 1...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online