{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Solution4

# Solution4 - EE 200 Fall 2009(Weber Homework 4 Solutions 1 a...

This preview shows pages 1–2. Sign up to view the full content.

EE 200 – Fall 2009 (Weber) Homework 4 Solutions 1. a. The individual frequency responses are given by H 1 ( e j ˆ ω ) = 1 - e - j ˆ ω H 2 ( e j ˆ ω ) = 1 + e - j ˆ ω 2 H 3 ( e j ˆ ω ) = e - j ˆ ω + e - j ˆ ω 2 The overall frequency response is then H ( e j ˆ ω ) = H 1 ( e j ˆ ω ) H 2 ( e j ˆ ω ) H 3 ( e j ˆ ω ) = (1 - e - j ˆ ω )(1 + e - j ˆ ω 2 )( e - j ˆ ω + e - j ˆ ω 2 ) = (1 + e - j ˆ ω 2 - e - j ˆ ω - e - j ˆ ω 3 )( e - j ˆ ω + e - j ˆ ω 2 ) = e - j ˆ ω + e - j ˆ ω 3 - e - j ˆ ω 2 - e - j ˆ ω 4 + e - j ˆ ω 2 + e - j ˆ ω 4 - e - j ˆ ω 3 - e - j ˆ ω 5 = e - j ˆ ω - e - j ˆ ω 5 b. The difference equation for the cascaded systems is y [ n ] = x [ n - 1] - x [ n - 5] 2. a. From the impulse response: H ( e j ˆ ω ) = 1 - e - j ˆ ω 3 = e - j ˆ ω 3 / 2 parenleftBig e j ˆ ω 3 / 2 - e - j ˆ ω 3 / 2 parenrightBig = e - j ˆ ω 3 / 2 (2 j sin(ˆ ω 3 / 2)) = e - j ˆ ω 3 / 2 (2 e jπ/ 2 sin(ˆ ω 3 / 2)) = 2 e - j ω 3 / 2 - π/ 2) sin(ˆ ω 3 / 2) b. For an input frequency of 2 π/ 3 the response is H ( e j 2 π/ 3 ) = 2 e - j ((2 π/ 3)3 / 2 - π/ 2) sin((2 π/ 3)3 / 2) = 2 e - j ( π/ - π/ 2) sin( π ) = 0 The output signal is then y [ n ] = 0.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}