Experiment_2 - l=a 1 for i = R(1,2:R(1,l n1r =[n1r,n1axis(1(2*del(i/a)^alpha)^(1/2 calculation of n1(r NA=[NA,NAaxis(1(i/a)^alpha)^(1/2 calculation

This preview shows page 1. Sign up to view the full content.

clc; clear all; disp('fundamentals of graded index fibers'); d = input('enter the diameter of core in micrometer ='); d = d*1000; %converting micrometer to nanometer n1axis = input('enter the index at core axis ='); %n1(0) =1.4 to 1.5 n2 = input('enter the index of cladding ='); %n2 = 1.4 to 1.5, n2<n1(0) alpha = input('enter profile parameter ='); %alpha = 1 to infinite r = input('enter the radius in micrometer at which acceptance angle is to be fined ='); a = d/2; % radius of core of fiber del = ((n1axis^2)-(n2^2))/(2*(n1axis^2));% refractive index defference NAaxis = (((n1axis)^2)-(n2^2))^(1/2);%NA(0) R = [0:1:a]; % array with values of core radius n1r = n1axis; % n1(r) NA = NAaxis;
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: l=a+1; for i = R(1,2):R(1,l) n1r =[n1r,n1axis*((1-(2*del*((i/a)^alpha)))^(1/2))]; % calculation of n1(r) NA=[NA,NAaxis*((1- (i/a)^alpha )^(1/2))]; % calculation of NA(r) end theta = asind(NAaxis*((1- (r/a)^alpha )^(1/2))); % calculation of acceptance angle disp('the value of acceptance angle in degree is ='); disp(theta); subplot(1,2,1); plot(R,n1r); title('refractive index in graded index fiber w.r.t. radius'); xlabel('radius(nm)---->'); ylabel('refractive index(unitless)---->'); grid; subplot(1,2,2); plot(R,NA); title('Numerical Aperture in graded index fiber w.r.t. radius'); xlabel('radius(nm)---->'); ylabel('numerical aperture(unitless)---->'); grid;...
View Full Document

This note was uploaded on 03/01/2010 for the course ELECTRONIC 12345 taught by Professor Xyz during the Summer '10 term at Punjab Engineering College.

Ask a homework question - tutors are online