Exam2pdf - Exam 2 Real Analysis 1 11!] 0/2008 Each problem...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Exam 2 Real Analysis 1 11!] 0/2008 Each problem is worth 10 points. Show adequate justification for full credit. Don’t panic. 1. State the definition of compactness. 4 98 T' 8 3 r: o f’?""/iT'/’r7&—f 9 Q ‘1')“ (9pfim Cos/é” 0'7"" fifixi a? “977‘ <— 5)“ b (o [/96 W, / 2. State the (local) definition of continuity. L‘E‘x‘i' rib-'7nz M (1.5!). U-K 6001 C I5 (ofl4inuoxosfl7l'ai'g' Cor vex» 33m 5+. )x—QIAS and m) =9 )chb—kag' p? 3. Give an example of a function fiR - R that fails to be differentiable at exactly one point. ’FL {5 atmwuw 8.134- ‘ ng. 4. State the Intemiediate Value Theorem. "Us {he buncfioh'kiS Conh'nuous on [(1);] and K 13 a man number be..meen Madonna! {50:}; Adhere wig’ts q qul number ceCa,b) sum/la "(lamb [703)”;1'Q- M / ' €43 cm» ArfikaaW of o. owl £1643 to 5. State and prove the Quotient Rule for Derivatives. Hull “*- fl 3%?- l I 1 "$015 Lcmm. m MW. m: f raw (rm = a? EOE; won, 12m (M _ N is”) * "ng X, —- f x- >A 0‘ xga X_0\ (00— (x) :: PM? U. . J1 I 3mm du -.: I:.m.« @519 ,1...— r I x—vox XW'Q ' gum) 5 '30“) ‘flim -"'"'” a z. xaa net. ‘11“ detin “Lgkg M W 39:, Mnums 0* 0k Luv/u; “‘3‘” ‘H’t UJA 4L, ' by TEAM Nu m fixi' «(100)3ch + #145 gusséfim ’5 gab - ' ‘C ’3“) “O I 395 4 (as er- ; (03 fl mfim ’ am?- 5:03 3—3637. = $565 5 - EasFms 530351 Tbs 1d»; (from? '13 cowgdu, 4/ 6. Provo directly from the definition that fix) = 5x + 2 is continuous at x = 3. 16(5):- . I ‘z’fl' Mj gimp £>0/ we always >H’“*4m} <8 [5x {(2 -H} (e am find 5‘ 9/5 ma“ 1hr" 9'] Isms” (a Hmm g / WWW/$.ch ‘ I XFBI [Aha/<5) x60 IE fftg/ < 9/5 5 5/x-.%/ < a /5x-15/ (E jag—H" (8 _ M =7 Manhaige . / -? iijMAQfiMW 400013 con/I’M éf‘xgz , 7. State and prove the Mean Value Theorem. 1‘5 OI BJHCHDY“) B Confihqoq‘s on (O.le and dlfiemnh‘ame 0n Lq,b)_ there was“ c: eta-(Ado) Suck Nab HO: know- {5(9) WEsz T’mv [6% (b) ~— 15 (a) _ ’ 39x): (’70:) - _ ué‘v 5') Ewan . b _ cwi 9'04?) :: B (7") - 5.2L J“ lorq Ga Kane's heomm, we Khan)! Mere axis» 01 (“é—Ca b) SUCH J’lflc‘vi— -_ 0 star 9E6) -: (s'cc > (if? Leif” Jun-q m” 5 36 ) 2 5:11.252 174:1 I 8. Prove that the complement of a closed subset of IR is open. Le)? E be; M cAoSad 80V) mg'R _ - S'gose, TE *5 was) “dc QQQJQ. W 3x 625%”; '5A. no MR%V\\OO(V¥DO§$ o£ x 0% comwckfi ufi‘WYt“ 13’? o C {\QACbWbof “GOA (SQ u W38 <1...(\ Q_kg..w\.Q—A¥ arc {El . TM 51 ts OAK 0.6 cwmu\a.\~?0(\ ""“c 6‘ BU“ am 5 2% C/{Ofl/ x1 M—‘r' \CLQ G: “W6 Cofijffaokic}: Mac‘r x-e; E437 5;; “2'5 MAB-'er. open. / Mica? _ 0 ifx ¢ 0 9. Is the functlo'n f(x) = _ 0 a rational fimction? Support your answer. a radiancfl Rbficzh-Oh COL“ he LOHHUA (11.3; (Jolflflbme €dgmmmi v O po’YnQMialS (we, ConfinUOuLS and dr'JrLtféhhhb‘e on )2 {Ct-hoan mncb'ons we. df’tiexcenh'alole on I WM medms w"? g/ {’93) i5 mg Al‘kamhab’eag’; 2399 m, ()6 a? m: Jermain o? W) b!) (N) .6 mg!- a rah‘onod'FUthbYfix 10. Prove or give a counterexample: A function f which is differentiable at x = a must be differentiable on an interval ofthe form (x - 8, x + e) for some a > 0. I Cbuwis Er examp ‘1‘.) 5 {X0 X is r0x+1‘0“0\ i i: 0 iii: ‘>< i=3 !-Vf0\+-I:OV1CL\ 03' One. 00‘me which ‘5 K 3 ,__—_ Sc. ii is 391 dimwmhfible on m; {ml-um} ...
View Full Document

This note was uploaded on 03/01/2010 for the course MAT e taught by Professor Dfaf during the Spring '10 term at Punjab Engineering College.

Page1 / 10

Exam2pdf - Exam 2 Real Analysis 1 11!] 0/2008 Each problem...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online