fall 2006 STAT 230 Quiz

# fall 2006 STAT 230 Quiz - STAT 230 Quiz#5 3:40 — 4:10 pm...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: STAT 230 Quiz #5 Nov 23, 2006 3:40 — 4:10 pm Name: ___—__ S LD: UWUserid:__Mark / 20 Circle your instructor and time slot: 1. Metzler(1:30) 2. Drekic(11:30) 3. Springer(10:30) 4. Dtekic(12:30) 5. Ramirez(8:30) 1‘ The daily internet time (measured in hours) used by a local web design company is a. random variable X having probability density function (p.d.£) given by __ 423(10—2) {02‘ng g 10 My) ~ { 0 elsewhexe. [2] (a) Show that. c = 1/5000. We "4145+ 54v: C algs(/O—X)o/X 1' / c (25)”; ?5/0”: / ' i c (25000-20000) 4:. I C= .5000 [l] (b) Calculate P(X = 5.5). FZX=55)=0 since X is a can+inuou3 ram/am variable, . [2] (c) Calculate P(3 < X S 7). F(3<Xs 7) = 51%4‘ 7X3Z/0-x)c/x = 50/00 (ZiX‘/'_ §)/37 = 1 /2005 [T_ I65807_ 1205+ 233—] 5000 __ / _ 5000 , IZ43G = 3/07 [4] (d) Calculate the mean and variance of daily internet time usage. 500 = 5400 JO"? *(/0 —x)0/X = (ZXS— :°>/,,’° / : 5090 (200000— 500%;00) : £2 IO 77 3 I)! = 5500 \J; z 7 p Z = 31,—;(g/a— —’;—)L — (27°) [ ( 5000000 __ 10000000) _ ﬂ 3 7 = .5000 7 = [000 _ 100 Z! 7 {5—2 3/746, [2] (e) Daily use of the internet costs the company \$0.50 per hour plus a \$2 overhead charge. What is the standard deviation of the daily cost to use the internet? LE1" C Perv—warn” “Hie a/a/ﬂ/ cos‘f' “(‘0 use ‘672 [rt/"Erna": Then) '- 0; = 0.50} = 0.5\/%%"— ago.” [4] (r) Deﬁne Y = + 2. Find the gang}; 00/75/ij Y: I/x?+Z O) ID]2 we. 170+; 4474+ Fm )8 E2) FY'Yy)= YSyT’ yeczlwifﬂ' = F(\/)—(+25)/) = Sy—Z) = m s 9.2%) : ECCy—Z)z) The 076 Y/Sj/lvlen 52/ ny—(Ec(y_z)z)> = ~F((y_.2)’-) ' 29—2) =55; . 9-2)‘(lo—9—2)‘)926/—2) 2 = 25’” 0475/0 “4"” 3 10M 2 Sys \//‘o'+2 [5] 2. Suppose W, X, and Y are random variables such that Var(W) = 4, Var(X) = 16, and Var(Y) = 9. Fhrthermore, assume that CovU’V, X) = 3, pw,y = —0.5, and X and Y are uncorrelated. Calculate the standard deviation of Z = 2W — 3X + Y. Von/(Z): Var(2w—SX+Y)"‘ - = AHMVOM) + 9 wranvmvhz BZX-3)va(Vl§X)+ (2x I )LMW) +(—3)0)CDVO(ZY):I =0 = /¢+ /’+4 +9 —/2(3)—/—4/Cov(w,y) = /é7—3é +4[‘72)(2)(3) = /(,7—3e——/2 = /.2/ "'oj7_=\/\Ar(z>= IZ/ =// STAT 230 Quiz #5 Nov 23, 2006 3:40 — 4:10 pm Name: S LD: UWUserid: Mark / 20 Circle your instructor and time slot: 1. Metzler(1:30) 2. Drekic(11:30) 3. Springer(10:30) 4. Drekic(12:30) 5. Ramirez(8:30) 1. The daily internet time (measured in hours) used by a local web design company is a random variable X having probability density function (p.d.f.) given by _ lcz(100 — 12) for 0 g z s 10 “1) > { 0 elsewhere. [2] (a) Show that k = 1/2500. Vl/e "1445+ ha Va [(J;IZ((/00~Xz)alx = / /<(50X‘— 419/5” = / k(5000—2500) =l k="i'“ Z 500 [1] (b) Calculate P(X =65). PZX=6. 5) = 0 since Xis a conﬁnum Vane/om Var; able. W,” [2] ((3) Calculate P(4 < X S 8). 8 P<4<Xsa>) = 24—003; Mme—wax if = 25%: (50xz— “air—Mfﬂ = Egg—0 (3200-/oz4 —ch0+ 64) H40 72 2500 ”” /25 =057é [4] (d) Calculate the mean and variance of daily internet time usage. Ea) = 2590 £/;Z(/00—x2)a’x = Lgaazeﬁ— 292/3 3 ﬂgaa‘L—ZOOOD) (3—9 1/ 5.3333 Val/(X) = 2;“, \52’0x3000-x‘)dx - (4 z Ewan— ¥)/;°— (ef 25/00 (250000 __ 500000)_ 254 7 [00 __ Z5é 9 T3— = 5%: 4.8839 ll [2] (9) Daily use of the internet costs the company \$0.25 per hour plus a. \$3 overhead charge. What is the standard deviation of the daily cost to use the internet? LEI“ C rarr252n+ "Hie. day-b1 005+ +0 use 'IL/Ia in+erne7li The") C1: 0.25X+3. "0;: 0.250;< = 0.25%? 2 «0,55 [4] (f) DeﬁneY=x/).( +3. Find the p.d.f. on. ConsiJer Y= 5+ 3. we» xs to, mama not. warm [\$5243]. Ferys Es,\/:?+3:|) * = {70074352,} = PM)? Sy-3) = Fmszrsﬁ) .. z E(C/—3)z) Thcr.al.‘p. o‘P Y [SJ/Van A); 3%‘(Ii((/_3)2)) = ‘P[()/-3)2)'Z()I—3) = 21530- . (y-3)2Doo—(y-3)‘ﬂ- 291—3) 3 721% (y-—3)3[/00-[)/’3)4J 1091 3 5y S VIE—+5, [5) 2. Suppose W, X, and Y are random variables such that Var(W) = 9, Var(X) = 4, and Var(Y) = 16. Furthermore, assume that Cov(X,Y) = 3, pw,x = —0.5, and W and Y are uncorrelated. Calculate the standard deviation of Z = 3W — X + 21’. VarC Z): mew—Xaw = ‘7 Var(W) + man‘ﬂ/M Y) +2ﬁ3>(—I>Gv(vyx)+(3)a)@64w +(—n(2)cov0(,'v)] = 21+4+ + é‘f — a Cov(Vt§X) —¢f(3) = M7 —/2 —6 (Va )(3)(z) = M? —/2 + k? = /55 a}: \/l/AV(Z) = Wu 2 /Z.45 ...
View Full Document

## This note was uploaded on 03/03/2010 for the course STAT 230 taught by Professor Various during the Fall '06 term at Waterloo.

### Page1 / 4

fall 2006 STAT 230 Quiz - STAT 230 Quiz#5 3:40 — 4:10 pm...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online