10 p2 - 356 Chapter 10 Properties of Areas Locate the...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 356 - Chapter 10 Properties of Areas Locate the position of the centroid in the composite area shown in Fig. P1021. V Fig. P10.21 10.22 Locate the position of the centroid in the composite area shown in Fig. P1022. ’ Fig. P1022 10.23 Locate the position of the centroid in the composite area shown in Fig. P1023. Fig. P1023 10.24 Locate the position of the centroid in the composite area shown in Fig. P1024. Fig. P1024 Statics —. 357 10.25 Locate the position of the centroid in the composite area shown in Fig. P1025. YT Fig. P1025 12—, W , 10.26 Determine the moment of inertia (second moment of the area) of a circle, shown in Fig. P1026, with respect to its z—axis. Fig. P1026 10.27 Determine the polar moment of inertia of the circle shown in Fig. P1026. 10.28 Determine the moment of inertia (second moment of the area) of a semicircle, shown in Fig. P1028, with respect to its z-axis. Fig. P1028 2 10.29 Determine the moment of inertia (second moment of the area) of a semi—elliptical area, shown ’ in Fig. P1029, with respect to its z—axis. ' V Fig. P1029 I 1 2 2a 10.30 Determine the moment of inertia (second moment of the area) of the spandrel area, shown in Fig. P1030, with respect to its x—axis. 358 -— Chapter 10 Properties of Areas Fig. P10.30 Y = kx" 10.31 Using the parallel axis theorem, determine the moment of inertia of the semicircle shown in Fig. P1031 about its centroidal axis zc. Fig. P1031 10.32 Using the parallel axis theorem, determine the moment of inertia of the rectangular area about the axis 2’ shown in Fig. P1032. Fig. P1032 10.33 Using the parallel axis theorem, determine the moment of inertia of the circular area about the axis 2’ shown in Fig. P1032. Fig. P1033 2' 10.34 Using the parallel axis theorem, determine the moment of inertia of the triangular area about the axis 2’ shown in Fig. P1034. Fig. P1034 Statics —— 359 10.35 Using the parallel axis theorem, determine the moment of inertia of the parabolic area about the axis 2’ shown in Fig. P1035. y h Fig. P1035 z a 3h/4 2! 10.36 Determine the moment of inertia about the centrmdal films of the box SCCthD shown In Fig. P1036. h1 h2 Fig. P1036 10.37 Determine the moment of inertia about the centroidal axis of the Tee section shown in Fig. P1037. y I Fig. P1037 10.38 Determine the moment of inertia about the centroidal axis of the modified I section shown in Fig. P1038. 360 ——~ Chapter 10 Properties of Areas ‘ Fig. F1038 Fig. P1039 10.40 Determine the moment of inertia about the centroidal axis of the modified Z section shown in Fig. P10.40. y ‘V Fig. P10.40 w ’ ...
View Full Document

{[ snackBarMessage ]}

Page1 / 5

10 p2 - 356 Chapter 10 Properties of Areas Locate the...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online