This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Problem Set 0 Spring 2010 Due: Thursday Jan 28, 2:00pm, in class before the lecture. Please follow the homework format guidelines posted on the class web page: http://www.cs.uiuc.edu/class/sp10/cs373/ 1. [ Category : Notation, Points : 20] Answer each of the following my marking each with true , false , or wrong nota tion . Follow the notations in Sipser . { ... } is used to represent sets and not multisets or anything else. D1) { a,b,c } ∩ { d,e } = {} D2) { a,b,c } ∩ { d,e } = { ∅ } D3) { a,b,c } ∪ { d,a,e } = { a,b,c,d,a,e } D4) { a,b,c } ∪ { d,a,e } = { a,b,c,d,e } D5) { a,b,c } \ { a,d } = { b,c } D6) ∅ ∈ { ∅ ,a,b,c } D7) ∅ ⊆ { ∅ ,a,b,c } D8) ∅ ∈ ∅ D9) a ⊆ { ∅ ,a,b,c } D10) { a,c } + { c,b } = { a,b,c } D11) { a,b }  { b } = { a } D12) { a,a } = { a } D13) {{ a } , { a }} = { a,a } D14) a ∈ { a, { a } , {{ a }}} D15) { a } ∈ { a, { a } , {{ a }}} D16) {{{ a }}} ⊆ { a, { a } , {{ a }}} D17) { ∅ } = {{}} D18) { a,b } × { c,d } = { ( a,c ) , ( b,d ) } D19) { a,b } × { c,d } = { c,d...
View
Full
Document
This note was uploaded on 03/04/2010 for the course CS 373 taught by Professor Kuma during the Spring '10 term at University of Illinois at Urbana–Champaign.
 Spring '10
 kuma

Click to edit the document details