ENG1110_HW3_answer_key - Increasing light energy 2.0 eV 2.5...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Increasing light energy 2.0 eV 2.5 eV 3.1 eV c o n d u c tio n b a n d ( e m p ty ) v a le n c e b a n d ( fil e d ) 1.7 eV LIGHT Solar Cell A Bandgap 1.0 eV 2.0 eV c o n d u c tio n b a n d ( e m p ty ) v a le n c e b a n d ( fil e d ) Solar Cell B Bandgap ENGRI 1110 Homework #3 Solutions 1) Solar cell A uses a semiconductor with a band gap of 1 eV. Solar cell B uses a semiconductor with a band gap of 2 eV. Either cell is thick enough to absorb all the light above its band gap. Both cells can work simultaneously with one on the top of the other to operate more efficiently in a small space. a) Which cell has to be on top (first to receive the sunlight) for both to work simultaneously, and b) why? There are, of course, two configurations for this problem: 1) Cell A on top and cell B on bottom 2) Cell B on top and cell A on bottom. Since either cell is thick enough to absorb all energies above its band gap, in order for both cells to work simultaneously, the second configuration must be used. Lets look at configuration 1 and see what would happen. Since the bandgap of cell As semiconductor is 1eV, it would absorb all energies (1.7-3.1eV) in the visible spectrum. No light would be transmitted through cell A and cell B would not generate any electricity. Configuration 2 has the larger bandgap material of cell B on top. Cell B would absorb all energies above 2eV and allow the lower energy light to filter down to cell A. This configuration would allow both cells to work and be a more efficient use of space. 1.7 eV <2.0 eV >2.0 eV 2.5 eV 3.1 eV LIGHT Increasing light energy 2.0 eV 1.0 eV c o n d u c tio n b a n d ( e m p ty ) c o n d u c tio n b a n d ( e m p ty ) v a le n c e b a n d ( fil e d ) v a le n c e b a n d ( fil e d ) Solar Cell A Solar Cell B Bandgap Bandgap 2) In both the conventional solar cell based on p-n junctions and the Gratzel cell, charge carriers are produced by the absorption of light. However the mechanisms for bringing the charge carriers out to current carrying connections are different. the charge carriers out to current carrying connections are different....
View Full Document

This note was uploaded on 03/07/2010 for the course MS&E 111 at Cornell University (Engineering School).

Page1 / 4

ENG1110_HW3_answer_key - Increasing light energy 2.0 eV 2.5...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online