MT10001

# MT10001 - "":~h 1~ Q~ t\I1 ·Hl€.ritfofq'l O • Nf3oA;~'i"II'S ot ~ Cot be ~'o;b-I'1 ~dle d"IICi-=<cii"":=<

This preview shows page 1. Sign up to view the full content.

4. (6 points) Prove that if G is a cyclic g~oup then any subgroup of G is cyclic. L(Z r N( C{. l\( ~ ~lt.w./\+s o~ th2. fO\ ,.. ~t ~or ""ek. t "ç"fve.,s • \'vi bt. +~ s,. ."llest fcs,·ti~ •. C/lutt-- be:.r ~Io\L\" Uvd ~~ ~ N. N=- < Q~>. C.vioose Ci\~ el~+- ci. ~ ec "i. e,lj &IJcl;~ o.\3or:f~,. ..1 k~ P(Vi-+~ hl.\t , <.~ M.'tI:Nii\H~ ~) ,·"con.1:.s+l!'1\1'
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: "",:~h 1~ Q~ t\I1 ·Hl€.ritfofq 'l:: O • Nf3oA-;~ 'i"II)'S ot ~ Cot\ be. ~;('o;b-I'1 ~dle d "';IICi. \\\-= <cii"").-:= < o..-t"i > T ~t:cf\)rt qll e.1~tc c~ N a..rt. ;"~9c2.( ?oW«.S!i e~ ~i/-A OJ\cL. *~ c.\o. .\"", \r ~fO"-Q,tH . . ~~ i L....
View Full Document

## This note was uploaded on 03/08/2010 for the course MATH 100 taught by Professor Oral during the Spring '10 term at Harvard.

Ask a homework question - tutors are online