CHAPTER 1 - 5 - 38....

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
38. We test to see if each term has the same dimensions. ( a ) x  =  vt 2  + 2 at ; [ L ] =? [ L / T ][ T ] 2  + [ L / T 2 ][ T ]; [ L ] ? [ LT ] + [ L / T ];  therefore, this is        not correct . ( b ) x  =  v 0 t  +  ! at 2 ; [ L ] =? [ L / T ][ T ] + [ L / T 2 ][ T ] 2 ; [ L ] = [ L ] + [ L ];  therefore, this        may be correct . ( c ) x  =  v 0 t  + 2 at 2 ; [ L ] =? [ L / T ][ T ] + [ L / T 2 ][ T ] 2 ; [ L ] = [ L ] + [ L ];  therefore, this        may be correct . 39. ( a ) 1.0 Å = (1.0 × 10 –10  m)/(10 –9  m/nm) =          0.10 nm . ( b ) 1.0 Å = (1.0 × 10 –10  m)/(10 –15  m/fm) =          1.0 × 10 5  fm . ( c ) 1.0 m = (1.0 m)/(10 –10  m/Å) =          1.0 × 10 10  Å . ( d ) From the result for Problem 23, we have 1.0 ly = (9.5 × 10 15  m)/(10 –10  m/Å) =          9.5 × 10 25  Å . 40. We use the values for the masses from Table 1–3.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

CHAPTER 1 - 5 - 38....

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online